
Modbus Message Formatting

The MODBUS protocol describes an industrial communications and distributed control system developed
by Gould-Modicon to integrate PLC’s, computers, terminals, and other monitoring, sensing, and control
devices. MODBUS is a Master/Slave communications protocol, whereby one device, (the Master), controls
all serial activity by selectively polling one or more slave devices. The protocol provides for one master
device and up to 247 slave devices on a common line. Each device is assigned an address to distinguish it
from all other connected devices.

Only the master initiates a transaction. Transactions are either a query/response type, (only a single slave is
address), or a broadcast/no response type, (all slaves are addressed). A transaction comprises a single query
and single response frame or a single broadcast frame.

Certain characteristics of the MODBUS protocol are fixed, such as the frame format, frame sequences,
handling of communications errors and exception conditions, and the functions performed.

Other characteristics are user selectable. These include a choice of transmission media, baud rate, character
parity, number of stop bits, and the transmission modes, (RTU or ASCII). The user selected parameters are
set, (hardwired or programmed), at each station. These parameters cannot be changed while the system is
running.

Modes of Transmission

The mode of transmission is the structure of the individual units of information within a message, and the
numbering system used to transmit the data. Two modes of transmission are available for use in a
MODBUS system. Both modes provide the same capabilities for communicating with PLC slaves; the
mode is selected depending on the equipment used as a MODBUS Master. One mode must be used per
MODBUS system; mixing of modes is not allowed. The modes are ASCII (American Standard Code for
Information Interchange), and RTU, (Remote Terminal Unit.) The characteristics of the two transmission
modes are defined below:

Characteristic ASCII (7-bit) RTU (8-bit)

Coding System hexadecimal (uses ASCII

printable characters (0-9, A-F)
8-bit binary

Number of bits per character:
start bits 1 1
data bits (least significant first) 7 8
parity (optional) 1 1
 (1-bit sent for even or odd parity,

no bits for no parity)
(1-bit sent for even or odd parity,
no bits for no parity)

stop bits 1 or 2 1 or 2

Error Checking LRC (Longitudinal Redundancy

Check)
CRC (Cyclical Redundancy
Check)

ASCII printable characters are easy to view when troubleshooting and this mode is suited to computer
masters programmed in a high level language, such as FORTRAN, as well as PLC masters. RTU is suited
to computer masters programmed in a machine language, as well as PLC masters.

In the RTU mode, data is sent in 8-bit binary characters. In the ASCII mode, each RTU character is first
divided into two 4-bit parts, (high order and low order), and then represented by the hexadecimal equivalent.
The ASCII characters representing the hexadecimal characters are used to construct the message. The

ASCII mode uses twice as many characters as the RTU mode, but decoding handling the ASCII data is
easier. Additionally, in the RTU mode, message characters must be transmitted in a continuous stream. In
the ASCII mode, breaks of up to one second can occur between characters to allow for a relatively slower
master.

Error Detection

There are two types of errors which may occur in a communications system: transmission errors and
programming errors. The MODBUS system has specific methods for dealing with either type of error.

Communications errors usually consist of a changed bit or bits within a message. The most frequent cause
of communications errors is noise: unwanted electrical signals in a communications channel. These signals
occur because of electrical interference from machinery, damage to the communications channel, impulse
noise, (spikes), etc. Communications errors are detected by character framing, a parity check, and a
redundancy check.

When the character framing, parity, or redundancy checks detect a communications error, processing of the
message stops. A PLC slave will not act on or respond to the message. (The same occurs if a non-existent
slave address is used.)

When a communications error occurs, the message is unreliable. The PLC slave cannot know for sure if
this message was intended for it. So the CPU might be answering a message which was not its message to
begin with. It is essential to program the MODBUS Master to assume a communications error has occurred
if there is no response in a reasonable time. The length of this time depends upon the baud rate, type of
message, and scan time of the PLC slave. Once this time is determined, the master may be programmed to
automatically retransmit the message.

The MODBUS system provides several levels of error checking to assure the quality of the data
transmission. To detect multibit errors where the parity has not changed, the system uses redundancy
checks: Cyclical Redundancy Check, (CRC), for the RTU mode and Longitudinal Redundancy Check,
(LRC), for the ASCII mode.

CRC-16 Cyclic Redundancy Check

The CRC-16 error check sequence is implemented as described in the following paragraphs.

The message, (data bits only, disregarding start/stop and parity bits), is considered as one continuous binary
number whose most significant bit, (MSB), is transmitted first. The message is pre-multiplied by X**16,
(shifted left 16 bits), then divided by X**16 + X**15 + X**2 + 1 expressed as a binary number
(11000000000000101). The integer quotient digits are ignored and the 16-bit remainder (initialized to all
ones at the start to avoid the case where all zeroes being an accepted message), is appended to the message,
(MSB first), as the two CRC check bytes. The resulting message including the CRC, when divided by the
same polynomial (X**16 + X**15 + X**2 + 1), at the receiver will give a zero remainder if no errors have
occurred. (The receiving unit recalculates the CRC and compares it to the transmitted CRC). All arithmetic
is performed modulo two, (no carries). An example of the CRC-16 error check for message HEX 0207,
(address 2, function 7 or a status request to slave number 2) follows:

The device used to serialize the data for transmission will send the conventional LSB or right-most bit of
each character first. In generating the CRC, the first bit transmitted is defined as the MSB of the dividend.
For convenience then, and since there are no carries used in arithmetic, let’s assume while computing the
CRC that the MSB is on the right. To be consistent, the bit order of the generating polynomial must be
reversed. The MSB of the polynomial is dropped since it affects only the quotient and not the remainder.
This yields 1010 0000 0000 0001, (HEX A001).. Note that this reversal of the bit order will have no effect
whatever on the interpretation or the bit order of characters external to the CRC calculations.

The step by step procedure to form the CRC-16 is as follows:

1. Load a 16-bit register with all 1’s.

2. Exclusive OR the first 8-bit byte with the high order byte of the 16-bit register, putting the result in
the 16-bit register.

3. Shift the 16-bit register one bit to the right.

4a. If the bit shifted out to the right is one, exclusive OR the generating polynomial 1010 0000 0000
0001 with the 16-bit register.

4b. If the bit shifted out to the right is zero; return to step 3.

5. Repeat steps 3 and 4 until 8 shifts have been performed.

6. Exclusive OR the next 8-bit byte with the 16-bit register.

7. Repeat step 3 through 6 until all bytes of the message have been exclusive OR’rd with the 16-bit
register and shifted 8 times.

8. The contents of the 16-bit register are the 2 byte CRC error check and is added to the message
most significant bits first.

 16-BIT REGISTER MSB Flag

(Exclusive OR) 1111 1111 1111 1111

02 0000 0010
 1111 1111 1111 1101
Shift 1 0111 1111 1111 1110 1
Polynomial 1010 0000 0000 0001

 1101 1111 1111 1111
Shift 2 0110 1111 1111 1111 1
Polynomial 1010 0000 0000 0001

 1100 1111 1111 1110
Shift 3 0110 0111 1111 1111 0
Shift 4 0011 0011 1111 1111 1
Polynomial 1010 0000 0000 0001

 1001 0011 1111 1110
Shift 5 0100 1001 1111 1111 0
Shift 6 0010 0100 1111 1111 1
Polynomial 1010 0000 0000 0001

 1000 0100 1111 1110
Shift 7 0100 0010 0111 1111 0
Shift 8 0010 0001 0011 1111 1
Polynomial 1010 0000 0000 0001

 1000 0001 0011 1110
07 0000 0111

 1000 0001 0011 1001

Shift 1 0100 0000 1001 1100 1
Polynomial 1010 0000 0000 0001

 1110 0000 1001 1101
Shift 2 0111 0000 0100 1110 1
Polynomial 1010 0000 0000 0001

 1101 0000 0010 1111
Shift 3 0110 1000 0010 0111 1
Polynommial 1010 0000 0000 0001

 1100 1000 0010 0110
Shift 4 0110 0100 0001 0011 0
Shift 5 0011 0010 0000 1001 1
Polynomial 1010 0000 0000 0001

 1001 0010 0000 1000
Shift 6 0100 1001 0000 0100 0
Shift 7 0010 0100 1000 0010 0
Shift 8 0001 0010 0100 0001 0

 HEX 12 HEX 41

TRANSMITTED MESSAGE WITH CRC-16

(MESSAGE SHIFTED TO RIGHT TO TRANSMIT)

 12 41 07 02

0001 0010 0100 0001 0000 0111 0000 0010

LRC (Longitudinal Redundancy Check)

The error check sequence for the ASCII mode is LRC. The error check is an 8-bit binary number
represented and transmitted as two ASCII hexadecimal (hex) characters. The error check is produced by
converting the hex characters to binary, adding the binary characters without wraparound carry, and two’s
complementing the result. At the received end the LRC is recalculated and compared to the sent LRC. The
colon, CR, LF, and any imbedded non-ASCII hex characters are ignored in calculating the LRC.

Address 02 0000 0010
Function 01 0000 0001
Start Add H.O. 00 0000 0000
Start Add L.O. 00 0000 0000
Quantity of Pts 00 0000 0000
 08 0000 1000
 Sum 0000 1011

 1’s complement 1111 0100
 +1 0000 0001
Error Check F5 2’s complement 1111 0101

MODBUS Message Types

ASCII Framing

Framing in ASCII Transmission mode is accomplished by the use of the unique colon, (:), character to
indicate the beginning of frame and carriage return/line feed, (CRLF), to delineate end of frame. The line
feed character also serves as a synchronizing character which indicates that the transmitting station is ready
to receive an immediate reply.

BEGIN
FRAME

ADDRESS FUNCTION DATA ERROR
CHECK

EOF READY
TO
RECEIVE

: 2-CHAR 16-

BIT
2-CHAR 16-
BITS

N X 4-CHAR
N X 16-BITS

2-CHAR
16-BITS

CR LF

RTU Framing

Frame synchronization can be maintained in RTU transmission mode only by simulating a synchronous
message. The receiving device monitors the elapsed time between receipt of characters. If three and one-
half character times elapse without a new character or completion of the frame, then the device flushes the
frame and assumes that the next byte received will be an address.

T1,T2,T3 ADDRESS FUNCTION DATA CHECK T1,T2,T3

 8-BITS 8-BITS N X 8-BITS 16-BITS

Address Field

The address field immediately follows the beginning of frame and consists of 8-bits, (RTU), or 2 characters,
(ASCII). These bits indicate the user assigned address of the slave device that is to receive the message
sent by the attached master.

Each slave must be assigned a unique address and only the addressed slave will respond to a query that
contains its address. When the slave sends a response, the slave address informs the master which slave is
communicating. In a broadcast message, an address of 0 is used. All slaves interpret this as an instruction
to read and take action on the message, but not to issue a response message.

Function Field

The Function Code field tells the addressed slave what function to perform. MODBUS function codes are
specifically designed for interacting with a PLC on the MODBUS industrial communications system. The
high order bit in this field is set by the slave device to indicate an exception condition in the response
message. If no exceptions exist, the high-order bit is maintained as zero in the response message.

The following table lists those functions supported by various WinTECH Software Applications:

CODE MEANING ACTION

01 READ COIL STATUS Obtains current status, (ON/OFF), of a

group of logic coils.
02 READ INPUT STATUS Obtains current status, (ON/OFF), of a

group of discrete inputs.
03 READ HOLDING REGISTER Obtains current binary value in one or

more holding registers.
04 READ INPUT REGISTER Obtains current binary value in one or

more input registers.
05 FORCE SINGLE COIL Force logic coil to a state of ON or

OFF.
06 PRESET SINGLE REGISTER Place a specific binary value into a

holding register.
15 WRITE MULTIPLE COILS Force a group of logic coils to a

defined state.
16 PRESET MULTIPLE REGISTERS Place specific binary values into a

group of holding registers.

Data Field

The data field contains information needed by the slave to perform the specific function or it contains data
collected by the slave in response to a query. This information may be values, address references, or limits.
For example, the function code tells the slave to read a holding register, and the data field is needed to
indicate which register to start at and how many to read. The imbedded address and data information varies
with the type and capacity of the PLC associated with the slave.

Error Check Field

This field allows the master and slave devices to check a message for errors in transmission. Sometimes,
because of electrical noise or other interference, a message may be changed slightly while its on its way
from one device to another. The error checking assures hat the slave or master does not react to messages
that have changed during transmission. This increases the safety and the efficiency of the MODBUS system.

The error check field uses a Longitudinal Redundancy Check, (LRC), in the ASCII mode of transmission,
and a CRC-16 check in the RTU mode.

Exception Responses

Programming or operation errors are those involving illegal data in a message, no response from the PLC to
its interface unit, or difficulty in communicating with a slave. These errors result in an exception response
from either the master computer software or the PLC slave, depending on the type of error. The exception
response codes are listed below. When a PLC slave detects one of these errors, it sends a response message
to the master consisting of the slave address, function code, error code, and error check fields. To indicate
that the response is a notification of an error, the high-order bit of the function code is set to one.

CODE NAME MEANING

01 ILLEGAL FUNCTION The message function received is not an allowable
action for the addressed slave.

02 ILLEGAL DATA ADDRESS The address referenced in the data field is not an
allowable address for the addressed slave device.

03 ILLEGAL DATA VALUE The value referenced in the data field is not allowable
in the addressed slave location.

04 FAILURE IN ASSOCIATED
DEVICE

The slave’s PC has failed to respond to a message or an
abortive error occurred.

05 ACKNOWLEDGE The slave PLC has accepted and is processing the long
duration program command.

06 BUSY, REJECTED
MESSAGE

The message was received without error, but the PLC is
engaged in processing a long duration program
command.

07 NAK-NEGATIVE
ACKNOWLEDGMENT

The PROGRAM function just requested could not be
performed.

READ OUTPUT STATUS (FUNCTION CODE 01)

This function allows the user to obtain the ON/OFF status of logic coils used to control discrete outputs
from the addressed slave only. Broadcast mode is not supported with this function code. In addition to the
slave address and function fields, the message requires that the information field contain the initial coil
address to be read, (Starting Address), and the number of locations that will be interrogated to obtain status
data.

The addressing allows up to 2000 coils to be obtained at each request; however, the specific slave device
may have restrictions that lower the maximum quantity. The coils are numbered from zero; (coil number 1
is address 0000, coil number 2 is address 0001, etc.)

The following is an example of a message to Read Output Status Coils 20-56 from slave device number 17.

ADDR FUNC DATA

START
PT HO

DATA
START
PT LO

DATA #
OF PTS
HO

DATA #
OF PTS
LO

ERROR
CHECK
FIELD

11 01 00 13 00 25 B6

An example response to Read Output Status is shown below. The data is packed one bit for each coil. The
response includes the slave address, function code, quantity of data characters, and error checking. Data
will be packed with one bit with one bit for each coil, (1 = ON, 0 = OFF). The low order bit of the first
character contains the addressed coil, and the remainder follow. For coil quantities that are not even
multiples of eight, the last characters will be filled in with zeroes at the high end. The quantity of data
characters is always specified as the quantity of RTU characters, i.e., the number is the same whether RTU
or ASCII is used.

ADDR FUNC BYTE

COUNT
DATA
COIL
STATUS
20-27

DATA
COIL
STATUS
28-35

DATA
COIL
STATUS
36-43

DATA
COIL
STATUS
44-51

DATA
COIL
STATUS
52-56

ERROR
CHECK
FIELD

11 01 05 CD 6B B2 0E 1B D6

The status of coils 20-27 is shown as CD(HEX) = 1100 1101(Binary). Reading left to right, this shows that
coils 27,26,23,22, and 20 are all on. The other coil data bytes are decoded similarly.

READ INPUT STATUS (FUNCTION CODE 02)

This function allows the user to obtain the ON/OFF status of discrete inputs in the addressed slave.
Broadcast mode is not supported. In addition to the slave address and function code fields, this message
requires that the information field contain the initial input address to be read, (Starting Address) and the
number of locations that will be interrogated to obtain the status data.

The following is an example of a message to Read Input Status Coils 10197-10218 from slave device
number 17.

ADDR FUNC DATA

START
PT HO

DATA
START
PT LO

DATA #
OF PTS
HO

DATA #
OF PTS
LO

ERROR
CHECK
FIELD

11 02 00 C4 00 16 13

An example response to Read Input Status is shown below. The data is packed one bit for each coil. The
response includes the slave address, function code, quantity of data characters, and error checking. Data
will be packed with one bit with one bit for each coil, (1 = ON, 0 = OFF). The low order bit of the first
character contains the addressed coil, and the remainder follow. For coil quantities that are not even
multiples of eight, the last characters will be filled in with zeroes at the high end. The quantity of data
characters is always specified as the quantity of RTU characters, i.e., the number is the same whether RTU
or ASCII is used.

ADDR FUNC BYTE

COUNT
DATA
DISCRETE
INPUT
10197-10204

DATA
DISCRETE
INPUT
10205-10212

DATA
DISCRETE
INPUT
10213-10218

ERROR
CHECK
FIELD

11 02 03 AC DB 35 2E LRC

The status of inputs 10197-10204 is shown as AC (HEX) = 1010 1100 (Binary). Reading left to right, this
shows that inputs 10204, 10202, 10200 and 10099 are all on. The other input data bytes are decoded
similarly.

READ OUTPUT REGISTERS (FUNCTION CODE 03)

Read Output Registers allows the user to obtain the binary contents of holding registers in the addressed
slave.

These registers can store the numerical values of associated timers and counters which can be driven to
external devices.

The addressing allows up to 125 registers to be obtained at each request; however, the specified slave
device may have restrictions that lower this maximum quantity. The registers are numbered from zero,
broadcast mode is not allowed.

The following example reads registers 40108 through 40110 from slave number 17.

ADDR FUNC DATA

START
PT HO

DATA
START
PT LO

DATA #
OF REGS
HO

DATA #
OF REGS
LO

ERROR
CHECK
FIELD

11 03 00 6B 00 03 7E

The addresses slave responds with its address and the function code, followed by the information field. The
information field contains 2 bytes describing the quantity of data bytes to be returned. The contents of the
registers requested (DATA), are two bytes each, with the binary content right justified within each pair of
characters. The first byte includes the high order bits and the second, low order bits.

In the example below, the registers 40108-40110 have the decimal contents 555, 0, and 100 respectively.

ADDR FUNC BYTE

COUNT
DATA
OUTPUT
REG
H.O.
40108

DATA
OUTPUT
REG
L.O.
40108

DATA
OUTPUT
REG
H.O.
40109

DATA
OUTPUT
REG
L.O.
40109

DATA
OUTPUT
REG
H.O.
40110

DATA
OUTPUT
REG
L.O.
40110

ERROR
CHECK
FIELD

11 03 06 02 2B 00 00 00 64 55

READ INPUT REGISTERS (FUNCTION CODE 04)

Function Code 04 obtains the contents of the controllers input registers. These locations receive their vales
from devices connected to the I/O structure and can only be referenced, not altered from within the
controller nor via MODBUS.

The example below requests the contents of register 30009 in slave number 17.

ADDR FUNC DATA

START
PT HO

DATA
START
PT LO

DATA #
OF REGS
HO

DATA #
OF REGS
LO

ERROR
CHECK
FIELD

11 04 00 08 00 01 E2

In the response message, the contents of register 30009 is decimal value 0.

ADDR FUNC BYTE

COUNT
DATA
INPUT
REG HO
30009

DATA
INPUT
REG LO
30009

ERROR
CHECK
FIELD

11 04 02 00 00 E9

FORCE SINGLE COIL (FUNCTION CODE 05)

This message forces a single coil either On of OFF. Any coil that exists within the controller can be forced
to either state, (ON or OFF). Coils are numbered from zero (i.e. coil 1 is address 0000, coil 2 is address
0001, etc.). The data value 65,280, (FF00 HEX) will set the coil ON and the value zero will turn it off. All
other values are illegal and will not effect the coil. The use of slave address 00, (Broadcast mode), will
force all attached slaves to modify the desired coil.

The example below requests slave number 17 to turn coil number 0173 ON.

ADDR FUNC DATA

COIL
HO

DATA
COIL
LO

DATA #
ON/OFF

DATA ERROR
CHECK
FIELD

11 05 00 AC FF 00 3F

The normal response to the command request is to retransmit the message as received, after the coil state
has been altered.

ADDR FUNC DATA

COIL
HO

DATA
COIL
LO

DATA #
ON/OFF

DATA ERROR
CHECK
FIELD

11 05 00 AC FF 00 3F

PRESET SINGLE REGISTER (FUNCTION CODE 06)

Function 06 allows the user to modify the contents of a holding register. Any holding register that exists
within the controller can have its contents changed by this message. The values are provided in binary up to
the maximum capacity of the controller. Unused high-order bits must be set to zero. When used with slave
address 00, all slave controllers will load the specified register with the contents specified.

ADDR FUNC DATA

REG
HO

DATA
REG
LO

DATA
VALUE
HO

DATA
VALUE
LO

ERROR
CHECK
FIELD

11 06 00 87 03 9E C1

The normal response to a preset single register request is to retransmit the query message after the register
has been altered.

ADDR FUNC DATA

REG
HO

DATA
REG
LO

DATA
VALUE
HO

DATA
VALUE
LO

ERROR
CHECK
FIELD

11 06 00 87 03 9E C1

FORCE MULTIPLE COILS (FUNCTION CODE 15)

Function 15 allows the user to modify the contents of a group of consecutively addressed coils.
The following example forces 10 coils starting at address 20, (13 HEX). The two data fields,
CD = 1100 1101 and 00 = 0000 0000, indicate that coils 27, 26, 23, 22 and 20 are to be forced on.

ADDR FUN
C

H.O.
ADDR

L.O.
ADDR

QUANTITY BYTE
CNT

DATA
COIL
STATUS

DATA
COIL
STATUS

ERROR
CHECK
FIELD

11 0F 00 13 00 0A 02 CD 00 F4

The normal response to a FORCE MULTIPLE COILS request is to echo the slave address, function code,
starting address, and quantity of coils set.

ADDR FUNC H.O.

ADDR
L.O.
ADDR

QUANTITY ERROR
CHECK
FIELD

11 0F 00 13 00 0A C3

PRESET MULTIPLE REGISTERS (FUNCTION CODE 16)

Holding registers existing within the controller can have their contents changed via function code 16.
Sixteen bits of data for each register is contained within the message.

ADDR FUN
C

H.O.
ADDR

L.O.
ADDR

QUANTITY BYTE
CNT

H.O.
DATA

L.O.
DATA

etc. ERROR
CHECK
FIELD

11 10 00 87 00 02 04 00 0A ??

The normal response to a PRESET MULTIPLE REGISTERS request is to echo the slave address, function
code, starting address, and quantity of registers set.

ADDR FUNC H.O.

ADDR
L.O.
ADDR

QUANTITY ERROR
CHECK
FIELD

11 10 00 87 00 02 56

