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Abstract

Jenetics is an Genetic Algorithm, respectively an Evolutionary
Algorithm, library written in Java. It is designed with a clear separa-
tion of the several algorithm concepts, e. g. Gene, Chromosome, Genotype,
Phenotype, Population and fitness Function. Jenetics allows you to min-
imize or maximize the given fitness function without tweaking it. This
manual describes the concepts implemented in the Jenetics project and
gives you examples and best practice tips.
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1 INTRODUCTION

1 Introduction

The Jenetics project isa J avaﬂlibrary which provides an genetic algorithm (GA)
implementation. The project has very few dependencies to other libraries. At
runtime it only depends on the JScienceﬂ libraryﬂ which is part of the down-
load package. For building the library from the sources you only have the
JDK 1.7 and Gradltﬂ to be installed, all other dependencies are available in the
package which you can download from https://sourceforge.net/projects/
jenetics/files/jenetics/|orhttps://bitbucket.org/fwilhelm/jenetics/
downloadsl For additional informations revere to the build instructions at sec-

tion [ on page 73]

This manual is not an introduction or a tutorial for genetic algorithms in
general. It is assumed that the reader has a knowledge about the structure
and the functionality of genetic algorithms. A good GA introduction can
be found in [7], [B], [6] or [8].

The order of the single execution steps of genetic algorithm may slightly
differ from implementation to implementation. Listing[l|shows the pseudo-code
of the Jenetics genetic algorithm steps.

Py < Pinitial
F(P)
while ! finished do
g+g+1
Sy + selects(Py—1)
Oy <+ selecto(Py—1)
Oy + alter(Oy)
Py + filte'f'[gi > gma:c](sg) F filte"'[gi > gmax}(og)
F(Pg)

Listing 1: Genetic algorithm

Line (1) creates the initial population and line (2) calculates the fitness value
of the individuals. (This is done by the GeneticAlgorithm.setup() method.)
Line (4) increases the generation number and line (5) and (6) selects the survivor
and the offspring population. The offspring/survivor fraction is determined by
the offspringFraction property of the GA. The selected offspring are altered
in line (7). The next line combines the survivor population and the altered off-
spring population—after removing the died individuals—to the new population.
The steps from line (4) to (9) are repeated until a given termination criterion is
fulfilled.

Figure shows the class-diagram of the main structures of the GA. The
Gene is the base of the class structure. Genes are aggregated in Chromosomes.
One to n Chromosomes are aggregated in Genotypes. A Genotype and a fitness
Function form the Phenotype, which are collected into a Population.

I1The library is build with and depends on Java SE 7: http://www.oracle.com/
technetwork/java/javase/downloads/index.html

Zhttp://jscience.org/

3 Jenetics uses the XML-serialization support and the concurrent capability of the JScience
library.

4The used Gradle version is 1.9 and it is downloaded automatically if you build the library
with the wrapper script ./gradlew: http://www.gradle.org/
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2 GETTING STARTED

Population Phenotype
1.*
—>
1 1
<<interface>> Genotype

(Fitness)Function

apply(genotype : Genotype)

1.*%
<<interface>> 1% <<interface>>
Gene < - <> Chromosome
getAllele()

Figure 1.1: Structure diagram

2 Getting started

The minimum GA setup needs a genotype factory, Factory<Genotype<?>>,
and a fitness Function. The Genotype implements the Factory interface and
can therefore be used as prototype for creating the initial Population and for
creating new random Genotypes.

public static void main(String [] args) {

Factory<Genotype<BitGene>> gtf = Genotype.valueOf(
BitChromosome . valueOf (10, 0.5)
)

Function<Genotype<BitGene >, Float64> ff = ...
GeneticAlgorithm<BitGene, Float64>

ga = new GeneticAlgorithm<>(gtf, ff, Optimize .MAXIMUM) ;
g, setup () ;
ga.evolve (100);
System.out.println (ga.getBestPhenotype ());
}

Listing 2: Simple GA setup

The genotype factory, gtf, in the example in listing [2] will create geno-
types which consists of one BitChromosome with length 10. The one to zero
probability of the newly created genotypes is set to 0.5. The fitness function
is parameterized with a BitGene and a Float64. That means that the fit-
ness function is calculating the fitness value as Float64 values. The return
type of the fitness function must be at least of the type Comparable. The
GeneticAlgorithm object is then created with the genotype factory and the fit-
ness function. In this example the GA tries to maximize the fitness function. If
you want to find the minimal value you have to change the optimize parameter
from Optimize.MAXIMUM to Optimize.MINIMUM. The ga.setup() call creates
the initial population and calculates its fitness values. Then the GA evolves 100
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generations (ga.evolve(100)) an prints the best phenotype found so far onto
the console.

In an more advanced setup you may want to change the default mutation
and/or selection strategies.

public static void main(String [] args) {
ga.setSelectors (new RouletteWheelSelector<BitGene>());
ga.setAlterers (
new SinglePointCrossover<BitGene>(0.1),
new Mutator<BitGene >(0.01)
)
ga.setup () ;
ga.evolve (100);
System.out.println (ga.getBestPhenotype());
}

The selection strategy for offspring and survivors in the given example are
set to the roulette-wheel selector. It is also possible to set the selector for
offspring and survivors independently with the setOffspringSelector and
setSurvivorSelector methods. The alterers are concatenated, at first the
crossover (with probability 0.1) is performed and then the chromosomes are
mutated (with probability 0.01). For a detailed description of the available

genetic operators revere to chapter

3 Base classes

This chapter describes the classes which are used to transform the actual prob-
lem into a structure that can be used by JeneticsE|

Genotype The central class, the GA is working with, is the Genotype. It
is the structural representative of an individual. The Phenotype class is the
actual representative of an individual, but only consists of the genotype and the
fitness function and doesn’t change the basic structure. The phenotype is only
a container which forms the environment of the genotype.

Chromosome
A Gene (2,8)

00 01 02]03 0405 0607 j Ne=8
Q
£ 1,0 Ney=10
g
f=]
& 2,0 2.8 Nep=9

3.0 - Nep=5

Ng=4 N,= 2, Nepy=32

Figure 3.1: Genotype structure

5The documentation of the whole API is part of the download package or can be viewed
online: http://jenetics.sourceforge.net/javadoc/index.htmll
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Figure [3.I] shows the genotype structure. A genotype consists of N¢ chro-
mosomes and a chromosome consists of N¢;) genes (depending on the chromo-
some). The overall number of genes of a genotype is given by the sum of the chro-
mosome’s genes, which can be accessed via the Genotype. getNumber0fGenes ()

method:
Ng—1

Ng = Z NC[i] (3.1)
1=0

The chromosomes of a genotype doesn’t have to have necessarily the same size.
It is only required that all genes are from the same type and the genes within
a chromosome have the same constraints; e. g. the same min- and max values
for numerical genes.

Genotype<Float64Gene> genotype = Genotype.valueOf(
new Float64Chromosome (0.0, 1.0, 8),
new Float64Chromosome (1.0, 2.0, 10),
new Float64Chromosome (0.0, 10.0, 9),
new Float64Chromosome (0.1, 0.9, 5)

) 8

The code snippet in the listing above creates a genotype with the same
structure as shown in figure 3] In this example the Float64Gene has been
chosen as gene type.

Fitness function The fitness function is also an important part when model-
ing the GA. It takes a genotype as argument and returns, at least, a Comparable
object as result—the fitness value. This allows the GA, respectively the selec-
tion operators, to select the offspring- and survivor population. Some selectors
have stronger requirements to the fitness value than a Comparable, but this
constraints is checked by the Java type system at compile time.

The following example shows the simplest possible fitness function. It’s the
identity function and returns the allele of an 1x1 float genotype.
class Id implements Function<Genotype<Float64Gene >, Float64> {

@Override

public Float64 apply(Genotype<Float64Gene> genotype) {
return genotype.getGene().getAllele ();
}

}

The first type parameter of the Function defines the kind of genotype from
which the fitness value is calculated and the second type parameter determines
the return type.

Fitness scaler The fitness value, calculated by the fitness function, is treated
as the raw-fitness of an individual. The Jenetics library allows you to apply an
additional scaling function on the raw-fitness to form the fitness value which is
used by the selectors. This can be useful when using probability selectors (see
chapter , where the actual amount of the fitness value influences
the selection probability. In such cases, the fitness scaler gives you additional
flexibility when selecting offspring and survivors. In the default configuration
the raw-fitness is equal to the actual fitness value, that means, the used fitness
scaler is the identity function.
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class Sqrt extends Function<Float64 , Float64> {
@Override
public Float64 apply(Float64 value) {
return Float64.valueOf(sqrt(value.doubleValue()));
}
}

The given listing shows a fitness scaler which reduces the the raw-fitness to its
square root. This gives weaker individuals a greater changes being selected and
weakens the influence of super-individuals.

When using a fitness scaler you have to take care that your scaler doesn't
destroy your fitness value. This can be the case when your fitness value
is negative and your fitness scaler squares the value. Trying to find the
minimum will not work in this configuration.

Genes Genes are the basic building blocks of the Jenetics library. They
contain the actual information (alleles) of the encoded solution. The available
Gene implementations should be sufficient for a very wide range of problem
domains. Refer to chapter for how to implement your own gene

types.

4 Genetic operators

Genetic operators| are used for creating genetic diversity (Alterer) and select
potentially useful solutions for recombination (Selector). This section gives
you an overview about the genetic operators available in the Jenetics library. It
also contains some theoretical information, which should help you to choose the
right combination of operators and parameters, for the problem to be solved.

4.1 Selectors

Selectors are responsible for selecting a given number of individuals from the
population. The selectors are used to divide the population into survivors and
offspring. The selectors for offspring and for the survivors can be chosen inde-
pendently.

final GeneticAlgorithm<Float64Gene, Float64> ga = ...
ga.setOffspringFraction (0.7) ;

ga.setSurvivorSelector (
new RouletteWheelSelector<Float64Gene, Float64 >()
)5

ga.setOffspringSelector (
new TournamentSelector<Float64Gene, Float64 >()
)

The offspringFraction property, fo € [0,1], determines the number of
selected offspring
No, = 110, = rint (|B,|| - fo) (4.1)



https://en.wikipedia.org/wiki/Genetic_operator

4.1 Selectors 4 GENETIC OPERATORS

and the number of selected survivors

Ns, = [[Sgll = [[Pyll = 1Og]| - (4.2)

<<interface>>
Selector

select(population : Population,count : Integer) : Population

A JAN JAN JAN
1 1 1
. ! ! . : !
<<realize>> | 1 <<realize>> <<realize>> 1
1 1 1
L

L L
TruncationSelector MonteCarloSelector TournamentSelector

1
1
1
1
1
1
1
1
1
1
1
1
1
<<realize>> |
L

ProbabilitySelector

|

BoltzmannSelector RouletteWheelSelector LinearRankSelector

StochasticUniversalSelector ExponentialRankSelector

Figure 4.1: Selector class diagram

Figure[f.I]shows the whole class hierarchy of the currently available selectors.
On the top the hierarchy is the Selector interface with the select method. Be-
side the well known standard selector implementation the ProbabilitySelector
is the base of a set of fitness proportional selectors.

Tournament selector In tournament selection the best individual from a
random sample of s individuals is chosen from the population Pg. The samples
are drawn with replacement. An individual will win a tournament only if the
fitness is greater than the fitness of the other s — 1 competitors. Note that
the worst individual never survives, and the best individual wins in all the
tournaments it participates. The selection pressure can be varied by changing
the tournament size s. For large values of s, weak individuals have less chance
of being selected.

Truncation selector In truncation selection|individuals are sorted according
to their fitness. Only the n best individuals are selected. The truncation se-
lection is a very basic selection algorithm. It has it’s strength in fast selecting
individuals in large populations, but is not very often used in practice.
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Monte Carlo selector The Monte Carlo selector selects the individuals from
a given population randomly. This selector can be used to measure the perfor-
mance of a other selectors. In general, the performance of a selector should be
better than the selection performance of the Monte Carlo selector.

Probability selectors Probability selectors are a variation of fitness propor-
tional selectors and selects individuals from a given population based on it’s
selection probability P (7). Fitness proportional selection works as shown in

N-1
Overall fitness F= Z f

i=0

So i S Ve fa fs

!

r€l0,F)

Figure 4.2: Fitness proportional selection

figure An uniform distributed random number r € [0, F') specifies which
individual is selected, by argument minimization:

i < minarg {7" < ifz} , (4.3)

n€l0,N) i—0

where N is the number of individuals and f; the fitness value of the i indi-
vidual. The probability selector works the same way, only the fitness value f;
is replaced by the individual’s selection probability P(¢). It is not necessary
to sort the population. The selection probability of an individual i follows a
binomial distribution

n

P = ( 1) Para-por (4.4

where n is the overall number of selected individuals and k& the number of
individual 7 in the set of selected individuals. The runtime complexity of the
implemented probability selectors is O(n + log(n)) instead of O(n?) as for the
naive approach: A binary (index) search is performed on the summed probability
array.

Roulette-wheel selector The roulette-wheel selector is also known as
fitness proportional selector. In the Jenetics library it is implemented as proba-
bility selector. The fitness value f; is used to calculate the selection probability
of individual i. F

P(i) = —5— (4.5)
Zj:l i



4.1 Selectors 4 GENETIC OPERATORS

Selecting n individuals from a given population is equivalent to play n times
on the roulette-wheel. The population don’t have to be sorted before select-
ing the individuals. Roulette-wheel selection is one of the traditional selection
strategies.

Linear-rank selector In linear-ranking selection the individuals are sorted
according to their fitness values. The rank N is assigned to the best individ-
ual and the rank 1 to the worst individual. The selection probability P(i) of
individual ¢ is linearly assigned to the individuals according to their rank.

P(i) = % <n_ +(nt—n7) Ji[__ll) : (4.6)

Here W_ is the probability of the worst individual to be selected and % the
probability of the best individual to be selected. As the population size is held
constant, the condition n™ = 2 —n~ and n~ > 0 must be fulfilled. Note that
all individuals get a different rank, respectively a different selection probability,
even if they have the same fitness value.[4]

Exponential-rank selector An alternative to the weak linear-rank selec-
tor is to assign survival probabilities to the sorted individuals using an expo-
nential function:

Ci—l

V-1’
where ¢ must within the range [0...1). A small value of ¢ increases the prob-
ability of the best individual to be selected. If ¢ is set to zero, the selection
probability of the best individual is set to one. The selection probability of all
other individuals is zero. A value near one equalizes the selection probabilities.
This selector sorts the population in descending order before calculating the
selection probabilities.

P(i) = (c— 1) (4.7)

Boltzmann selector The selection probability of the Boltzmann selector

is defined as
Pl = < 48
)=, (1)

where b is a parameter which controls the selection intensity and Z is defined
as

Z = En:efi. (4.9)
i=1

Positive values of b increases the selection probability of individuals with high
fitness values and negative values of b decreases it. If b is zero, the selection
probability of all individuals is set to %

Stochastic-universal selector Stochastic-universal selection[I] (SUS) is
a method for selecting individuals according to some given probability in a way
that minimizes the chance of fluctuations. It can be viewed as a type of roulette
game where we now have p equally spaced points which we spin. SUS uses a
single random value for selecting individuals by choosing them at equally spaced
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fo fi fs f3 fa fs
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Figure 4.3: Stochastic-universal selection

intervals. The selection method was introduced by James Baker.[2] Figure
shows the function of the stochastic-universal selection, where n is the number
of individuals to select. Stochastic universal sampling ensures a selection of
offspring, which is closer to what is deserved than roulette wheel selection. [7]

4.2 Alterers

Alterers are responsible for the genetic diversity of the genetic algorithm. The
alterer types used in Jenetics are

1. mutation/ and

2. recombination (e. g. [crossover).

<<interface>>
Alterer

alter(p : Population,generation : Integer) : Integer

D D
| <<realize>> <<realize>> |
L L
Mutator Recombinator
GaussianMutator SwapMutator MeanAlterer
MultiplePointCrossover Crossover PartiallyMatchedCrossover

SinglePointCrossover

Figure 4.4: Alterer class diagram
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4.2.1 Mutation

There are two distinct roles mutation plays in an Genetic algorithm:

1. Exploring the search space: By making small moves, mutation allows a
population to explore the search space. This exploration is often slow
compared to crossover, but in problems where crossover is disruptive this
can be an important way to explore the landscape.

2. Maintaining diversity: Mutation prevents a population from correlating.
Even if most of the search is being performed by crossover, mutation can
be vital to provide the diversity which crossover needs.

The mutation probability, P(m), is the parameter that must be optimized.
The optimal value of the mutation rate depends on the role mutation plays. If
mutation is the only source of exploration (if there is no crossover), the mutation
rate should be set to a value that ensures that a reasonable neighborhood of
solutions is explored.

The mutation probability, P(m), is defined as the probability that a specific
gene, over the whole population, is mutated. That means, the (average) number
of genes mutated by a mutator is

fi=Np- N, - P(m) (4.10)

where IV, is the number of available genes of a genotype and Np the population

size (revere to equation [3.1 on page 4J).

Mutator The mutator has to deal with the problem, that the genes are ar-
ranged in a 3D structure (see chapter [3). The mutator selects the gene which
will be mutated in three steps:

1. Select a genotype GJi] from the population with probability Pg(m),

2. select a chromosome C[j] from the selected genotype G[i] with probability
Pe(m) and

3. select a gene g[k] from the selected chromosome C[j] with probability
Py(m).

The needed sub-selection probabilities are set to

Pa(m) = Pe(m) = Py(m) = {/P(m). (4.11)

Gaussian mutator The Gaussian mutator performs the mutation of number
genes. This mutator picks a new value based on a Gaussian distribution around
the current value of the gene. The variance of the new value (before clipping to
the allowed gene range) will be

2
6’2 _ <gmax ;gmin) (412)

where gnin and gpq. are the valid minimum and maximum values of the number
gene. The new value will be cropped to the gene’s boundaries.

10
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Swap mutator The swap mutator changes the order of genes in a chromo-
some, with the hope of bringing related genes closer together, thereby facilitating
the production of building blocks. This mutation operator can also be used for
combinatorial problems, where no duplicated genes within a chromosome are
allowed, e. g. for the TSP.

4.2.2 Recombination

An enhanced genetic algorithm (EGA) combine elements of existing solutions
in order to create a new solution, with some of the properties of each parents.
Recombination creates a new chromosome by combining parts of two (or more)
parent chromosomes. This combination of chromosomes can be made by select-
ing one or more crossover points, splitting these chromosomes on the selected
points, and merge those portions of different chromosomes to form new ones.

Because of the possible different chromosome length and/or chromosome
constraints within a genotype, only chromosomes with the same genotype
position are recombined.

The recombination probability, P(r), determines the probability that a given
individual (genotype) of a population is selected for recombination. The (mean)
number of changed individuals depend on the concrete implementation and
can be vary from P(r) - Ng to P(r) - Ng - Or, where Og is the order of the
recombination, which is the number of individuals involved in the recombine
method.

Single-point crossover The single-point crossover changes two children chro-
mosomes by taking two chromosomes and cutting them at some, randomly cho-
sen, site. If we create a child and its complement we preserve the total number
of genes in the population, preventing any genetic drift. Single-point crossover
is the classic form of crossover. However, it produces very slow mixing compared
with multi-point crossover or uniform crossover. For problems where the site
position has some intrinsic meaning to the problem single-point crossover can
lead to smaller disruption than multiple-point or uniform crossover.

1/2|3|4|5/6,7|8 alb/c/de|f|g|h
abjc/de|f|g h 1/2|3|4|5|6|7|8
}

Il bjc/d/e f g|/h 1|2 de f|ig|h

al2|3/4|/5|6|7|8 ablc|/4|5 7|8

U ¥

1/2 4|5 gl h 1|2 4/5/6|7|h

ab/c/de|f|7|8 ab|c|d f 8
¥ ¥

Figure 4.5: Single-point crossover

11
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Figure [£.5] shows how the SinglePointCrossover class is performing the
crossover for different crossover points—in the given example for the chromo-
some indexes 0, 1, 3, 6 and 7.

Multi-point crossover If the MultiPointCrossover class is created with
one crossover point, it behaves exactly like the single-point crossover. The
following picture shows how the Multi-point crossover works with two crossover
points, defined at index 1 and 4.

12345678 ablc/d5(6|7|8

ab/c/de|figh 12|34 e|f h
¥ 5

1/2|/3|d|e|f|7|8 alb/c/de|f|g|8

ab/c/4/5/6|g|h 112|345 7 h

L} ¥ L} ¥

Figure 4.6: 2-point crossover

Figure [£7] you can see how the crossover works for an odd number of
crossover points.

2/3/4/5/6|7|8 ab/c/d5(6|7|h

ab/c/de|f|g h 12|34 e f g|8

¥ 5 ¥

1|2 d e g h alb/c/4|5/f|g|h

alblc|4|5/f|7|8 1/2|3|d|e|6|7|8
L} F ¥ } ¥

Figure 4.7: 3-point crossover

Partially-matched crossover The partially-matched crossover guarantees
that all genes are found exactly once in each chromosome. No gene is dupli-
cated by this crossover strategy. The partially-matched crossover (PMX) can
be applied usefully in the TSP or other permutation problem encodings. Per-
mutation encoding is useful for all problems where the fitness only depends on
the ordering of the genes within the chromosome. This is the case in many com-
binatorial optimization problems. Other crossover operators for combinatorial
optimization are:

e order crossover e edge recombination crossover

e cycle crossover e edge assembly crossover

The PMX is similar to the two-point crossover. A crossing region is cho-
sen by selecting two crossing points (see figure a)). After performing the
crossover we—normally—got two invalid chromosomes (figure b)). Chromo-
some 1 contains the value 6 twice and misses the value 3. On the other side
chromosome 2 contains the value 3 twice and misses the value 6. We can observe

12
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. 0l1]2[314]5(6/7/8]9
9/8/7/6/5/4/3/2/10

} '
y 0/1/2/6/5/a[67/89
9/8/7/3/4/5/3/2]/10

} }
o 0l1]2/6/5/a[317/8]9
987 3/4/5/6/2/10

} )

Figure 4.8: Partially-matched crossover. a) shows the original chromosomes, b)
the (invalid) chromosomes after crossover and c) the repaired chromosomes.

that this crossover is equivalent to the exchange of the values 3—6, 4—5 and
5—4. To repair the two chromosomes we have to apply this exchange outside

the crossing region (figure b)).

5 Nuts and bolts

5.1 Concurrency

The Jenetics library parallelizes independent task whenever possible. Espe-
cially the evaluation of the fitness function is done concurrently. That means
that the GA’s fitness-function must be thread safe, because it is shared by
all phenotypes of a population. The easiest way for achieving thread-safety
is to make the fitness function immutable and re-entrant. Jenetics uses the
ConcurrentContext| from the|Javolution| project for concurrent task execution.
In the default configuration the ConcurrentContext utilizes all availabkﬂ cores
of the target machine. If you want to change the number of used cores you
have to do this before the GA initialization. The configuration is done by the
Concurrency class as shown in the following example.

import org.jenetics.util.Concurrency;

public class Main {
public static void main(final String[] args) {
// Using 10 threads for evolving.
Concurrency . setConcurrency (9) ;
// Forces the GA to use only one thread.
Concurrency . setConcurrency (0) ;

If you want to disable the concurrent execution you have to set the con-
currency to zero. The ConcurrentContext uses it’s own—optimized—thread-
pool implementation. If you need to have a single executor service, for the

6This is defined by Runtime.getRuntime () .availableProcessors().

13
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GA and your own classes, you can initialize the Concurrency class with the
ForkJoinPool from the JDK.

import java.util.concurrent.ForkJoinPool;
import org.jenetics.util.Concurrency;

public class Main {
public static void main(final String[] args) {
final int nthreads = 10;
final ForkJoinPool pool = new ForkJoinPool(nthreads);
Concurrency . setForkJoinPool (pool);

}

The concurrent context from the Javolution project is used as shown in the
following listingm

ConcurrentContext.enter () ;
try {
ConcurrentContext . execute (new Runnable() { public void run() {
// Execution of task one.
D
ConcurrentContext . execute (new Runnable() { public void run() {
// Execution task two.
13K
} finally {

ConcurrentContext. exit () ;

}

The example in the listing above executes the two tasks in parallel. The exit ()
call in the finally block waits until all tasks finishes execution. Using the
Concurrency class this can be written more compactly.

try (final Concurrency c¢ = Concurrency.start ()) {

c.execute (new Runnable() { public void run() {
// Execution of task one.

s

c.execute (new Runnable() { public void run() {
// Execution of task two.

s

If the GA itself runs in a separate thread and you want to change the con-
figuration of the GA while running you have to acquire the GA’s lock to do this
in a safe manner. The following code example shows how to start the GA in a
separate thread.

final GeneticAlgorithm<Float64Gene, Float64> ga =
ga.setup () ;

// Starting the GA in separate thread.
Thread thread = new Thread (new Runnable() { public void run() {
while (! Thread. currentThread () . isInterrupted ()) {
ga.evolve ();
}

s

thread.start () ;

// Update the GA configuration.

7A detailed usage description about how to use it can be found at http://javolution.org/.
Keep in mind, that the number of threads is equal to the concurrency + 1.
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ga.getLock () .lock ();

try {
ga.setAlterer (new Mutation (0.02));
ga.setPopulationSize (120);
ga.setMaximalPhenotypeAge (30) ;

} finally {
ga.getLock () .unlock () ;

}

// Read the GA configuration.
ga.getLock () .lock ();

try {
final Statistics <?, 7> statistics = ga.getStatistics();
final Function<?, ?> scaler = ga.getFitnessScaler ();

} finally {

ga.getLock () .unlock () ;

The listing shows two examples how to use the lock. In the first example, the
lock is used for updating the GA configuration. The second example fetches the
statistics and fitness scaler in a guaranteed consistent way.

5.2 Statistics

The GeneticAlgorithm class offers population- and timing-statistics after ev-
ery evolve step. This information can be used to measure the performance
of the GA, or to implement a more sophisticated termination strategy than
evolve (100). Have a look at chapter for more information about GA ter-
mination.

GeneticAlgorithm<Float64Gene , Float64> ga =

ga.setup () ;

for (int i = 0; i < 100; ++i) {
ga.evolve () ;
System.out.println (ga. getStatistics ());

The statistics object returned by the GA stores information—among other
things—about the best- and the worst phenotype and some timing information,
for performance analysis. The following listing shows the console output of an
actual GA statistics.

| Age mean: 0.70000000000 |
| Age variance: 0.45555555556 |
| Samples: 10 |
| Best fitness: 0.9999419432876977 |
| Worst fitness: 0.9955246169910878 |

If the fitness value is a number type you can change the statistics calculator
of the GA to get more specific statistics information. The listing shows how to
set the number-statistics calculator for the GA.

final GeneticAlgorithm<Float64Gene, Float64> ga =
ga.setStatisticsCalculator (

new NumberStatistics.Calculator<Float64Gene, Float64 >()
)
ga.setup () ;
for (int i = 0; i < 100; ++i) {

15
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ga.evolve () ;
System.out.println (ga.getStatistics ());

With the new statistics calculator the console output for an statistics object
will look like the following listing. This is because instead of an Statistics ob-
ject an NumberStatistics object is returned by the getStatistics() method.

| Age mean: 0.70000000000 |
| Age variance: 0.90000000000

| Samples: 10 |
| |
| |

Best fitness: 0.996850999047305
Worst fitness: 0.77027602016712726
B e +
e et ettt e +
| Fitness Statistics |

| Fitness mean: 0.95754066252
| Fitness variance: 0.00505962871 |
| Fitness error of mean: 0.30280094458 |

For computation-performance analysis it might be interesting in which pro-
cessing steps the computation time is spent. On generation basis this can be
accessed via the ga.getStatistics() .getTime () property. The overall calcu-
lation time statistics is available via the ga.getTimeStatistics() method.

T T e T +
| Time Statistics |
o - +
| Select time: 0.00301738300
| Alter time: 0.00385119900
| Combine time: 0.00200538900
| Fitness calculation time: 0.01767134600 |
| Statistics calculation time: 0.02445853400
| Overall execution time: 0.05306906200 |
e e e T R +

The console output of the time statistics looks like listing above and has the
same format for the overall- and the generation time statistics.

5.3 Termination

The easiest way to terminate an GA is to evolve a specific number of generations.
This works well for most problems and termination is guaranteed. With the
statistics object, which is available for every generation, you can define a more
advanced termination strategy.

GeneticAlgorithm<Float64Gene , Float64> ga =

// Defining your termination function.
Function<Statistics <Float64Gene, Float64 >, Boolean> until =

ga.setup () ;
ga.evolve (until);

// Using the ’termination.SteadyFitness’ terminator.
ga.evolve(termination. SteadyFitness (5));

The GA terminates when the termination function returns false. Jenetics
comes with some default terminations functions implemented in the termination
class in the org. jenetics package. The steady-fitness terminator for example

16
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finishes the evolution if the best fitness value doesn’t increase for 5 consecutive
generations.

1| class SteadyFitness<C extends Comparable<? super C>>

2 implements Function<Statistics <?, C>, Boolean>

s|{

4 private final int _ genenerations;

5 private C _ fitness;

6 private int _ stableGenerations = 0;

7

8 public SteadyFitness(final int generations) {

9 __genenerations = generations;

10 }

11

12 @Override

13 public Boolean apply(Statistics <?, C> statistics) {
14 boolean proceed = true;

15 if (_fitness = null) {

16 _fitness = stat.getBestFitness();

17 _stableGenerations = 1;

18 } else {

19 final Optimize opt = stat.getOptimize () ;

20 if (opt.compare(_fitness,stat.getBestFitness()) >= 0) {
21 proceed = 4++_stableGenerations <= __genenerations;
22 } else {

23 _fitness = stat.getBestFitness();

24 _stableGenerations = 1;

25 }

26 }

27

28 return proceed ? Boolean.TRUE : Boolean .FALSE;
29 }

30|}

Listing 3: Steady state termination

Listing [3| shows the (shortened) code for the steady-state termination func-
tion which you can find in the termination class and should give you an idea
how to implement your own termination function.

5.4 Randomness

In general, GAs heavily depends on pseudo random number generators (PRNG)
for creating new individuals and for the selection- and mutation-algorithms. Je-
netics uses the Java Random object, respectively sub-types from it, for generating
random numbers. To make the random engine pluggable, the Random object is
always fetched from the RandomRegistry. This makes it possible to change the
implementation of the random engine without changing the client code. In in-
teraction with the LocalContext class from the Javolution project, the random
engine can easily changed, even for specific parts of the code.

The following example shows how to change and restore the Random object.
When entering the LocalContext, changes to the RandomRegistry are only
visible within this context. When leaving the context, the original Random object
is restored.

Factory<Genotype<Float64Gene>> factory = Genotype.valueOf(
new Float64Chromosome (0.0, 100.0, 10)
)5

List <Genotype<Float64Gene>> genotypes = new ArrayList<>();

N
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LocalContext.enter () ;

try {
RandomRegistry . setRandom (
new LCG64ShiftRandom . ThreadSafe (12345)
)

for (int i = 0; i < 100; ++i) {
genotypes.add(factory .newlInstance());

}
} finally {
LocalContext . exit ();
}

With the previous listing, a random, but reproducible, list of genotypes is cre-
ated. This might be useful while testing your application or when you want to
run the GA several times with the same initial population.
Function<Genotype<Float64Gene>> ff = ...

GeneticAlgorithm<Float64Gene, Float64> ga = new GeneticAlgorithm <>(
genotypes.get (0), ff
)

ga.setup (genotypes);

This example uses the generated genotypes to setup the initial population of the
GA. The GA is created with the first element of the genotypes, which is used as
genotype factory. This guarantees that the same kind of genotypes are created
while evolving. Calling the setup(Collection) method, the given collection
of genotypes is used as initial population. This method also automatically sets
the GA’s population size, that means the populationSize property of the GA
is changed to genotypes.size().

Setting the PRNG to a Random object with a defined seed has the effect,
that every run of the GA produces the same result—in a single threaded
environment.

The parallel nature of the GA implementation requires the creation of streams
t;,; of random numbers which are statistically independent, where the streams
are numbered with j = 1,2,3,....,p. p denotes the number of processes. We
expect statistical independence between the streams as well. The used PRNG
should enable the GA to play fair, which means that the outcome of the GA
is strictly independent from the underlying hardware and the number of paral-
lel processes. This is essential for reproducing results in parallel environments
where the number of parallel tasks may vary from run to run.

The Fair Play property of a PRNG guarantees that the quality of the GA
does not depend on the degree of parallelization.

There are essentially four different parallelizations techniques used in prac-
tice: Random seeding, Parameterization, Block splitting and Leapfrogging.

Random seeding Every thread uses the same kind of PRNG but with
a different seed. This is the default strategy used by the Jenetics library.

18
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The RandomRegistry is initialized with the ThreadlLocalRandom class from
the java.util.concurrent package. Random seeding works well for the most
problems but without theoretical foundationEl If you assume that this strategy
is responsible for some non-reproducible results, consider using the LCG64Shift—
Random PRNG instead, which uses block splitting as parallelization strategy.

Parameterization  All threads uses the same kind of PRNG but with dif-
ferent parameters. This requires the PRNG to be parameterizable, which is
not the case for the Random object of the JDK. You can use the LCG64Shift—
Random class if you want to use this strategy. The theoretical foundation for
these method is weak. In a massive parallel environment you will need a reliable
set of parameters for every random stream, which are not trivial to find.

Block splitting  With this method esach thread will be assigned a block of
random numbers, which should be enough for the whole runtime of the process.
This strategy is used when using the LCG64ShiftRandom.ThreadLocal class.
This class assigns every thread a block of 2°¢ ~ 7,2 - 10® random numbers.
After 128 threads, the blocks are recycled, but with changed seed.

Figure 5.1: Parallelization via block splitting

Leapfrog  Each thread ¢ € [0, P) only consumes the P*" random number.
Figure [5.2] shows the concept of the leapfrog method.

.
|

\
L
by .

A \J A

f ] ] ]

Figure 5.2: Parallelization via leapfrogging

8This is also expressed by Donald Knuth’s advice: »Random number generators should
not be chosen at random.«
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org.jenetics.util.LCG64ShiftRandom The LCG64ShiftRandon classisa Java
port of the trng::1cgb4_shift PRNG class of the TRNGE| library, imple-
mented in C++.[3] It implements additional methods, which allows to imple-
ment the block splitting—and also the leapfrog—method.
public class LCG64ShiftRandom extends Random {

public void split(final int p, final int s);

public void jump(final long step);

public void jump2(final int s);

Listing 4: LCG64ShiftRandom class

Listing [d] shows the interface used for implementing the block splitting and
leapfrog parallelizations technique. This methods have the following meaning;:

split Changes the internal state of the PRNG in a way that future calls to
nextLong() will generated the s sub-stream of p!* sub-streams. s must
be within the range of [0,p — 1). This method is used for parallelization
via leapfrogging.

jump Changes the internal state of the PRNG in such a way that the engine
jumps s steps ahead. This method is used for parallelization via block
splitting.

jump2 Changes the internal state of the PRNG in such a way that the engine
jumps 2° steps ahead. This method is used for parallelization via block
splitting.

Runtime performance Tableshows the random number (int, long, float
and double) generation speed for the different PRNG implementationsm

’ | int/s | long/s [ float/s | double/s |
Random 70 - 106 35-10° 70 - 106 35-10°
ThreadLocalRandom | 272-10° | 182-10% | 272-10°% | 180-10°
LCG64ShiftRandom | 230-10°% | 247-10° | 213-10° | 209 - 10°

Table 1: Performance of various PRNG implementations.

The default PRNG used by the Jenetics has the best runtime performance
behavior (for generating int values)lﬂ

5.5 Serialization

Jenetics supports serialization for a number of classes, most of them are located
in the org. jenetics package:

9http://numbercrunch.de/trng/

10Measured on a Intel(R) Core(TM) i5-3427U CPU @ 1.80GHz with Java(TM) SE Runtime
Environment (build 1.7.0_45-b18)—Java HotSpot(TM) 64-Bit Server VM (build 24.45-b08,
mixed mode)

' The random IndexStream implementation uses random int values for creating the random
indexes and this IndexStream is used for selecting the genes, chromosomes and genotypes.
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e BitGene e Float64Chromosome
e CharacterGene e Integer64Chomosome
e EnumGene

e Genotype
e Float64Gene

e Phenotype
e Integer64Gene

e Population

e BitChromosome
e CharacterChromosome e Statistics
e PermutationChromosome o NumberStatistics

With the serialization mechanism you can write a population to disk and
load it into an GA at a later time. It can also be used to transfer populations to
GAs, running on different hosts, over a network link. The I0 class, located in
the org. jenetics.util package, supports native Java serialization and XML
serialization. For XML marshaling Jenetics internally uses the XML support
from the Javolution project.

// Writing the population to disk.

final File file = new File("population.xml");
I0.xml. write (ga.getPopulation (), file);

N S

// Reading the population from disk.

6| Population<Float64Gene , Float64> population =

7 (Population<Float64Gene, Float64>)I0.xml.read(file);
s|ga.setPopulation (population) ;

o

The following listing shows the XML serialization of a population which
consists of genotypes as shown in figure on page [3} only the first phenotype
is shown.

1| <?xml version="1.0" encoding="UTF-8" ?>

2 | <org.jenetics.Population size="5">

3 <org.jenetics.Phenotype generation="5">

4 <org.jenetics.Genotype length="4" ngenes="32">

5 <org.jenetics.Float64Chromosome length="8" min="0.0" max="1.0">

6 <org.jscience.mathematics.number.Float64 value="0.76293546489060549"/>
7 <org.jscience.mathematics.number.Float64 value="0.4490748942977255"/>
8 <org.jscience.mathematics.number.Float64 value="0.8685782517794772"/>
9 <org.jscience.mathematics.number.Float64 value="0.43404173006814706"/>
10 <org.jscience.mathematics.number.Float64 value="0.7748011760986598"/>
11 <org.jscience.mathematics.number.Float64 value="0.92755029476262807"/>
12 <org.jscience.mathematics.number.Float64 value="0.8880996269143448"/>
13 <org.jscience.mathematics.number.Float64 value="0.17634803367965379"/>
14 </org.jenetics.Float64Chromosome>

15 <org.jenetics.Float64Chromosome length="10" min="1.0" max="2.0">

16 <org.jscience.mathematics.number.Float64 value="1.7742547808863836"/>
17 <org.jscience.mathematics.number.Float64 value="1.0714759765863326"/>
18 <org.jscience.mathematics.number.Float64 value="1.4881208724154296"/>
19 <org.jscience.mathematics.number.Float64 value="1.969210737048173"/>
20 <org.jscience.mathematics.number.Float64 value="1.0842413675851379"/>
21 <org.jscience.mathematics.number.Float64 value="1.7349757564088444"/>
22 <org.jscience.mathematics.number.Float64 value="1.062253646580321"/>
23 <org.jscience.mathematics.number.Float64 value="1.9431300005515593"/>
24 <org.jscience.mathematics.number.Float64 value="1.5618721365435897"/>
25 <org.jscience.mathematics.number.Float64 value="1.5171036936625253"/>
26 </org.jenetics.Float64Chromosome>
27 <org.jenetics.Float64Chromosome length="9" min="0.0" max="10.0">
28 <org.jscience.mathematics.number.Float64 value="0.61670513678230066"/>
29 <org.jscience.mathematics.number.Float64 value="6.6359384257223706"/>
30 <org.jscience.mathematics.number.Float64 value="8.133001248940242"/>
31 <org.jscience.mathematics.number.Float64 value="1.5579372281497306"/>
32 <org.jscience.mathematics.number.Float64 value="4.6681690463573968"/>
33 <org.jscience.mathematics.number.Float64 value="3.998294652354959"/>
34 <org.jscience.mathematics.number.Float64 value="7.5422435572236646"/>
35 <org.jscience.mathematics.number.Float64 value="8.331927525959226"/>
36 <org.jscience.mathematics.number.Float64 value="0.05821680659662265"/>
37 </org.jenetics.Float64Chromosome>
38 <org.jenetics.Float64Chromosome length="5" min="0.1" max="0.9">
39 <org.jscience.mathematics.number.Float64 value="0.6781179819630284"/>
40 <org.jscience.mathematics.number.Float64 value="0.5866711457075686"/>
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<org.jscience.mathematics.number.Float64 value="0.27517412822245135"/>
<org.jscience.mathematics.number.Float64 value="0.68681756057994758"/>
<org.jscience.mathematics.number.Float64 value="0.71459051561735616"/>
</org.jenetics.Float64Chromosome>
</org. jenetics.Genotype>
<fitness
class="org.jscience.mathematics.number.Float64"
value="62.76897467920044"
/>
<raw-fitness
class="org.jscience.mathematics.number.Floaté4"
value="19.979985186009532"
/>
</org.jenetics.Phenotype>

</org.jenetics.Population>

When serializing a whole population the fitness function and fitness scaler
are not serialized. If a GA is initialized with a previously serialized population,
the GA’s current fitness function and fitness scaler are used for re-calculating
the fitness values.

The ga.setPopulation(Collection) method doesn’t perform a recalcula-
tion of the fitness values. This is done on demand, when evolving the next
generation. Setting the population can be done whenever desired. In contrast
to the ga.setup(Collection) method, which can only be called before starting
evaluation, as replacement for the ga.setup() call.

5.6 Utility classes

The org.jenetics.util package of the library contains utility classes which
are also very important for the GA implementation.

org.jenetics.util.Seq Most notable are the Seq interfaces and its imple-
mentation. They are used, among others, in the Chromosome and Genotype
classes and holds the Genes and Chromosomes, respectively. The Seq interface
itself represents a fixed-sized, ordered sequence of elements. It is an abstraction
over the Java build-in array-type, but much safer to use for generic elements,
because there are no casts needed when using nested generic types.

Figure [5.3|shows the Seq class diagram with their most important methods.
The interfaces MSeq and ISeq are mutable, respectively immutable specializa-
tions of the basis interface. Creating instances of the Seq interfaces is possible
via the Array class.

// Create ’different’ sequences.

final Seq<Integer> al = Array.box (1, 2, 3);
final MSeq<Integer> a2 = Array.box (1, 2, 3);
final ISeq<Integer> a3 = Array.box (1, 2, 3).tolSeq();

final MSeg<Integer> a4 = a3.copy();

// The ’equals’ method performs element—wise comparison.
assert (al.equals(a2) && al != a2);
assert (a2.equals(a3) && a2 != a3);
assert (a3.equals(ad) && a3 != a4);

How to create instances of the three Seq types is shown in the listing above.
The Seq classes also allows a more functional programming style. For a full
method description refer to the [Javadoc.

org.jenetics.util.IndexStream The abstract IndexStream class is used to
generate a stream of positive int values by calling the next () method. The
end of the stream is reached, when next () returns -1.
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<<interface>>
Seq<T>

get(index : Integer) : T

[ 1

<<interface>> <<interface>>
MSeq<T> 1ISeq<T>
set(index : Integer,value : T) copy() : MSeq<T>

swap(i : Integer,j : Integer)
tolSeq(j : Integer) : 1ISeq<T>

yAN

. I
<<realize>> ,

1
Array<T>

Figure 5.3: Seq class diagram

public abstract class IndexStream {
public abstract int next();
public static IndexStream Random(int n, double p, Random r) {

}

Listing 5: IndexStream class

An random IndexStream, which is created with the IndexStream.Random(int,
double, Random) factory method, is used in the Selector and Alterer classes
for choosing random genes and/or chromosomes (indices)[?]

The following listing shows the typical usage of the IndexStream.
final Seq<Integer> array =

final IndexStream indices = IndexStream .Random (
array .length (), 0.5, new Random /()
)

for (int i = indices.next(); i != —1; i = indices.next()) {
System.out.println (array.get(i));
}

An important property of the random IndexStream is, that the number of
selected items ng follows a Binomial distribution with g = n - p and may differ
from run to run. The random IndexStream produces unique values in ascending
order.

org.jenetics.util.Accumulator The accumulator classes are mainly used
for (incrementally) calculating statistic values in the Statistics object.

12The elements returned by the random IndexStream are strictly increasing, except the
termination element., which is —1.

23




6 EXTENDING JENETICS

1| public interface Accumulator<T> {

2

public void accumulate(final T value);

s|}

1
2
3
4
5
6

Listing 6: Accumulator interface

Implementations of the Accumulator interface have an internal state which
is updated when the accumulate method is called. If the values for accumula-
tion are stored in an Iterable object, the accumulate helper methods in the
accumulator object can be used for accumulation. The accumulation of two or
more accumulators is parallelized.
final Seq<String> data = Array.valueOf("—10","1","2","3","4" ["5");
final accumulators.Max<Integer> max = new accumulators.Max<>();
final accumulators.Min<Integer> min = new accumulators.Min<>();
accumulators.accumulate (

data ,

max.map(functions . StringTolnteger),
min.map(functions.StringLength)

)

System.out. println (String . format (
"Max value: %s, min length: %s."

)

The given usage example calculates the maximum value and the minimum string
length of the given data values. It also shows how the MappedAccumulator.map
method can be used to operate on different data-type then the one given in the
data array. However the example snippet will print

, max.getMax (), min.getMin ()

$ Max value: 5, min length: 1.

onto the console.

6 Extending Jenetics

The Jenetics library was designed to give you a great flexibility in transforming
your problem into a structure that can be solved by an GA. It also comes with
different implementations for the base data-types (genes and chromosomes) and
genetic operators (alterers and selectors). If it is still some functionality missing,
this section describes how you can extend the existing classes. Most of the ex-
tensible classes are defined by an interface and have an abstract implementation
which makes it easier to extend it.

6.1 Genes

Genes are the starting point in the class hierarchy. They hold the actual in-
formation, the alleles, of your problem domain. Beside the classical bit-gene,
Jenetics comes with gene implementations for numbers (double- and long val-
ues), characters and enumeration types.

public interface Gene<A, G extends Gene<A, G>>
extends Factory<G>, Serializable , ValueType, Verifiable

public A getAllele () ;

public G newlnstance () ;
public boolean isValid () ;
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Listing 7: Gene interface

For implementing your own gene type you have to implement the Gene in-
terface with three methods: (1) the getAllele() method which will return the
wrapped data, (2) the newInstance method for creating new, random instances
of the gene—must be of the same type and have the same constraint—and (3)
the isValid() method which checks if the gene fulfill the expected constraints.
The gene constraint might be violated after mutation and/or recombination. If
you want to implement a new number-gene, e. g. a gene which holds complex
values, you may want extend it from the abstract NumberGene class.

Every gene extends the Serializable interface. For normal genes there is
no more work to do for using the Java serialization mechanism. If you want to
serialize your gene in XML format, you have to extend the XMLSerializable

interface from the Javolution projectE Have a look at chapter [5.5 on page 20,

for detailed information about serialization.

6.2 Chromosomes

A new gene type normally needs a corresponding chromosome implementation.
The following listing shows the Chromosome interface and the methods that must
be implemented.

public interface Chromosome<G extends Gene<?, G>>

extends Factory<Chromosome<G>>, Iterable<G>, Verifiable ,
Immutable, Serializable

{
public Chromosome<G> newlnstance (ISeq<G> genes) ;
public G getGene() ;
public G getGene(int index);
public ISeq<G> toSeq () ;
public int length () ;
}

Listing 8: Chromosome interface

The most important part of a chromosome is the factory method newInstance,
which lets the GA create a new chromosome instance from a sequence of genes.
This method is used by the alterers when creating new, combined chromosomes.
The other methods should be self-explanatory.

The chromosome has the same serialization mechanism as the gene. For the
minimal case it extends the Serializable interface. For XML serialization you
have to extend the XMLSerializable, which may rely on XML serialization of
the genes.

6.3 Selectors

If you want to implement your own selection strategy you only have to imple-
ment the Selector interface with the select method.

3For information how to make your gene XML serializable read the instructions
on the Javolution site: |http://javolution.org/target/site/apidocs/javolution/xml/
XMLSerializable.html.
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public interface Selector<
G extends Gene<?, G>,
C extends Comparable<? super C>
>
{
public Population<G, C> select (
Population<G, C> population ,
int count,
Optimize opt
)
}

Listing 9: Selector interface

The first parameter is the original population from which the sub-population
is selected. The second parameter, count, is the number of individuals of the
returned sub-population. Depending on the selection algorithm, it is possible
that the sub-population contains more elements than the original one. The
last parameter, opt, determines the optimization strategy which must be used
by the selector. This is exactly the point where it is decided whether the GA
minimizes or maximizes the fitness function.

Before implementing a selector from scratch, consider to extend your selec-
tor from the ProbabilitySelector (or any other available selector implemen-
tation). It is worth the effort to try to express your selection strategy in terms
of selection property P(7).

6.4 Alterers

For implementing a new alterer class it is necessary to implement the Alterer
interface. You might do this if your new gene type needs a special kind of alterer
not available in the Jenetics project.
public interface Alterer<G extends Gene<?, G>> {
public <C extends Comparable<? super C>> int alter (
Population<G, C> population ,
int generation

)
Listing 10: Alterer interface

The first parameter of the alter method is the population which has to be
altered. Since the the Population class is mutable, the altering is performed in
place. The second parameter is the generation of the newly created individuals
and the return value is the number of genes that has been altered.

6.5 Statistics

The GA statistics is the only object which doesn’t define an interface which
must be implemented. For extending the GA statistics you have to implement
three classes.

1. Statistics: Contains the actual statistics information and is an im-
mutable value class. It is not required that derived classes are also im-
mutable, but strongly recommended.
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2. Statistics.Builder: Is a classical object buildet@ which is building
Statistics objects.

3. Statistics.Calculator: Changing the statistics calculator lets the GA
create an instance of your statistics object. The statistics object is not
created directly but via the builder indirection. This is necessary because
the GA also adds some statistical information to the statistics object.

The following listing shows an excerpt of the statistics calculator which must
be extended.

public class Statistics {
public static class Calculator<
G extends Gene<?, G>,
C extends Comparable<? super C>

>
{
public Statistics.Builder<G, C> evaluate (
Iterable <? extends Phenotype<G, C>> population ,
int generation ,
Optimize opt
) {
}
}

Listing 11: Statistics class

The evaluate method of the Statistics.Calculator class return a builder,
pre-configured with your actual statistics values, which will create the actual
statistics object. This indirection is necessary because the GA is setting addi-
tional statistical information about killed and invalid individuals to the statistics
object.

The listing beneath shows the Statistics.Builder class with some of its
properties and the build method.

public class Statistics {
public static class Builder<
G extends Gene<?, G>,
C extends Comparable<? super C>
>
{
public Builder<G, C> invalid (int invalid);
public Builder<G, C> killed (int killed);
public Statistics <G, C> build () ;
}
}

Listing 12: Statistics.Builder class

The type of the statistics object returned by the GA is the same type as
returned by the statistics builder. If you want to access specific values from
your special statistics type, you have to cast it to your type.

Mhttps://en.wikipedia.org/wiki/Builder_pattern

27



https://en.wikipedia.org/wiki/Builder_pattern

7 EXAMPLES

Appendix

7 Examples

This section contains some coding examples which should give you a feeling of
how to use the Jenetics library. The given examples are complete, in the sense
that they will compile and run and produce the given example output.

Running the examples delivered with the Jenetics library can be started
with the run-examples. sh script.

$ ./run-examples.sh

Since the script uses JARs located in the build directory you have to build it
with the jar Ant target first; see section

7.1 Ones counting

Ones counting is one of the simplest model-problem. It uses a binary chro-
mosome and forms a classic genetic algorithnﬂ The fitness of a Genotype is
proportional to the number of ones.

1| import org.jenetics.BitChromosome;

2| import org.jenetics.BitGene;

3| import org.jenetics.GeneticAlgorithm

4| import org.jenetics.Genotype;

5| import org.jenetics.Mutator;

6| import org.jenetics.NumberStatistics;

7| import org.jenetics.Optimize;

s|import org.jenetics.RouletteWheelSelector;
o|import org.jenetics.SinglePointCrossover;
10| import org.jenetics.util.Factory;

11| import org.jenetics.util.Function;

13| final class OneCounter

14 implements Function<Genotype<BitGene>, Integer >

15| {

16 @Override

17 public Integer apply(Genotype<BitGene> genotype) {
18 int count = 0;

19 for (BitGene gene : genotype.getChromosome ()) {
20 if (gene.getBit()) {

21 “++count ;

22 }

23 }

24 return count;

25 }

2| }

28| public class OnesCounting {
29 public static void main(String [] args) {

30 Factory<Genotype<BitGene>> gtf = Genotype.valueOf (

31 new BitChromosome (20, 0.15)

32 )5

33 Function<Genotype<BitGene>, Integer> ff = new OneCounter () ;
34 GeneticAlgorithm <BitGene, Integer> ga =

15In the classic genetic algorithm the problem is a maximization problem and the fitness
function is positive. The domain of the fitness function is a bit-chromosome.
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new GeneticAlgorithm <>(gtf, ff, Optimize MAXIMUM) ;

ga.setStatisticsCalculator (
new NumberStatistics. Calculator <BitGene, Integer >()
)

ga.setPopulationSize (50) ;
ga.setSelectors (

new RouletteWheelSelector<BitGene, Integer >()

ga.setAlterers (

new Mutator<BitGene >(0.55) ,

new SinglePointCrossover <BitGene >(0.06)
)
ga.setup () ;

ga.evolve (100) ;
System.out.println (ga.getBestStatistics ());

The genotype in this example consists of one BitChromosome with a ones
probability of 0.15. The altering of the offspring population is performed by mu-
tation, with mutation probability of 0.55, and then by a single-point crossover,
with crossover probability of 0.06. After creating the initial population, with the
ga.setup() call, 100 generations are evolved. The tournament selector is used
for both, the offspring- and the survivor selection—this is the default selectorE

| Population Statistics |

| Age mean: 1.36000000000 |
| Age variance: 3.74530612245

| Samples: 50 |
| Best fitness: 18 |
| Worst fitness: 5 |

B = S LR +
B T +
| Fitness Statistics |
T e, +

| Fitness mean: 12.30000000000
| Fitness variance: 8.25510204082 |
| Fitness error of mean: 1.73948268172 |

The given example will print the overall timing statistics onto the console.

7.2 Real function

In this example we try to find the minimum value of the function

F(z) = cos <; + sin (m)) - cos (z) . (7.1)

The graph of function in the range of [0,2n], is shown in figure
and the listing beneath shows the GA implementation which will minimize the
function.
import static java.lang.Math.PI;

import static java.lang.Math.cos;
import static java.lang.Math.sin;

16For the other default values (population size, maximal age, ...) have a look at the Javadoc:
http://jenetics.sourceforge.net/javadoc/index.html
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Figure 7.1: Real function 2D

import org.jscience.mathematics.number. Float64;

import org.jenetics.Float64Chromosome;
import org.jenetics.Float64Gene;
import org.jenetics.GeneticAlgorithm;
import org.jenetics.Genotype;

import org.jenetics.MeanAlterer;
import org.jenetics.Mutator;

import org.jenetics.NumberStatistics;
import org.jenetics.Optimize;

import org.jenetics.util.Factory;
import org.jenetics.util.Function;

final class Real
implements Function<Genotype<Float64Gene >, Float64>

{
@Override
public Float64 apply(Genotype<Float64Gene> genotype) {
final double x = genotype.getGene().doubleValue();
return Float64.valueOf(cos (0.5 + sin(x)) % cos(x));
}
}

public class RealFunction {
public static void main(String [] args) {
Factory<Genotype<Float64Gene>> gtf = Genotype.valueOf(
new Float64Chromosome (0.0, 2.0 % PI)
)

Function<Genotype<Float64Gene>, Float64> ff = new Real();
GeneticAlgorithm<Float64Gene , Float64> ga =
new GeneticAlgorithm <>(gtf, ff, Optimize MINIMUM) ;

ga.setStatisticsCalculator (
new NumberStatistics.Calculator<Float64Gene, Float64 >()
)5

ga.setPopulationSize (20) ;
ga.setAlterers (

new Mutator<Float64Gene >(0.03) ,
new MeanAlterer<Float64Gene >(0.6)

ga.setup () ;
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ga.evolve (100) ;
System.out.println (ga.getBestStatistics ());

The GA works with 1 x 1 Float64Chromosomes whose values are restricted to
the range [0, 2w]. Without this restriction, the search space of the chromosome
will be between Double.MIN_VALUE and Double.MAX_VALUE.

| Age mean: 0.90000000000 |
| Age variance: 1.04210526316

| Samples: 20 |
| Best fitness: -0.93817189769409459 |
| Worst fitness: -0.93817189675601076 |

T +
e +
| Fitness Statistics |
e T T TS +

| Fitness mean: -0.93817189750
| Fitness variance: 0.00000000000 |
| Fitness error of mean: -0.20978161374 |

The GA will generated an console output like above.

7.3 0/1 Knapsack

In the knapsack problenﬂ a set of items, together with it’s size and value, is
given. The task is to select a disjoint subset so that the total size does not

exceed the knapsack size. For solving the 0/1 knapsack problem we define a

BitChromosome, one bit for each item. If the i*" bit is set to one the i*" item is

selected.

import org.jscience.mathematics.number. Float64 ;

import org.jenetics.BitChromosome;

import org.jenetics.BitGene;

import org.jenetics.Chromosome;

import org.jenetics.GeneticAlgorithm;
import org.jenetics.Genotype;

import org.jenetics.Mutator;

import org.jenetics.NumberStatistics;
import org.jenetics.RouletteWheelSelector;
import org.jenetics.SinglePointCrossover;
import org.jenetics.util.Factory;

import org.jenetics.util.Function;

final class Item {
public double size;
public double value;

}

final class KnapsackFunction
implements Function<Genotype<BitGene>, Float64>
{

private final Item[] _ items;
private final double _ size;

public KnapsackFunction(final Item || items, double size) {

Thttps://en.wikipedia.org/wiki/Knapsack_problem
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_items = items;
__size = size;

}

public Item[] getltems () {
return _ items;
}

@Override
public Float64 apply(final Genotype<BitGene> genotype) {
final Chromosome<BitGene> ch = genotype.getChromosome () ;

double size = 0;
double value = 0;
for (int i = 0, n = ch.length(); i < n; ++i) {
if (ch.getGene(i).getBit()) {
size += _items[i]. size;
value += _items[i]. value;

}

if (size > _size) {

return Float64 .ZERO;
} else {

return Float64.valueOf(value);
}

}

public class Knapsack {

private static KnapsackFunction FF(int n, double size) {
Item [|] items = new Item [n];
for (int i = 0; i < items.length; ++i) {
items[i] = new Item () ;
items[i].size = (Math.random () + 1)x*10;
items [i].value = (Math.random () + 1)=x15;

}

return new KnapsackFunction (items, size);

}

public static void main(String [] argv) throws Exception {
KnapsackFunction ff = FF(15, 100);
Factory<Genotype<BitGene>> genotype = Genotype.valueOf(
new BitChromosome (15, 0.5)
)5

GeneticAlgorithm <BitGene, Float64> ga =
new GeneticAlgorithm <>(genotype, ff);

ga.setMaximalPhenotypeAge (30) ;
ga.setPopulationSize (100);
ga.setStatisticsCalculator (

new NumberStatistics.Calculator <BitGene, Float64 >()

ga.setSelectors (
new RouletteWheelSelector<BitGene, Float64 >()

ga.setAlterers (

new Mutator<BitGene >(0.115) ,
new SinglePointCrossover<BitGene >(0.16)
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7 EXAMPLES

E

ga.setup () ;
ga.evolve (100) ;

System.out.println (ga.getBestStatistics ());

}
}

The console out put for the Knapsack GA will look like the listing beneath.
T +
| Population Statistics |
e T +
| Age mean: 1.55000000000 |
| Age variance: 2.69444444444
| Samples: 100 |
| Best fitness: 188.57227213871303 |
| Worst fitness: 0.0 |
T e T T T +
e +
| Fitness Statistics |
oo m s oo oo oo — oo _________ +
| Fitness mean: 157.60654768894
| Fitness variance: 1486.23455609328 |
| Fitness error of mean: 15.76065476889 |
R +

7.4 Traveling salesman

The Traveling Salesman problenﬁ is one of the classical problems in compu-
tational mathematics and it is the most notorious NP-complete problem. The
goal is to find the shortest distance, or the path, with the least costs, between
N different cities. Testing all possible path for N cities would lead to N! checks

to find the shortest one.

The following example uses a path where the cities are lying on a circle.
That means, the optimal path will be a polygon. This makes it easier to check

the quality of the found solution.

import static java.lang.Math.PI;
import static java.lang.Math.abs;
import static java.lang.Math.sin;

import org.jenetics.Chromosome;

import org.jenetics.EnumGene;

import org.jenetics.GeneticAlgorithm;

import org.jenetics.Genotype;

import org.jenetics.NumberStatistics. Calculator ;
import org.jenetics.Optimize;

import org.jenetics.PartiallyMatchedCrossover;
import org.jenetics.PermutationChromosome;
import org.jenetics.SwapMutator;

import org.jenetics.util.Factory;

import org.jenetics.util.Function;

class FF
implements Function<Genotype<EnumGene<Integer >>, Float64>
{
private final double[][] _adjacence;
public FF(final double[][] adjacence) {
_adjacence = adjacence;
}

8https://en.wikipedia.org/wiki/Travelling_salesman_problem
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@QOverride
public Float64 apply(Genotype<EnumGene<Integer>> genotype) {
Chromosome<EnumGene<Integer >> path =
genotype .getChromosome () ;

double length = 0.0;
for (int i = 0, n = path.length(); i < n; ++i) {
final int from = path.getGene(i).getAllele ();
final int to = path.getGene((i + 1)%n).getAllele ();
length += _adjacence[from][to];
}

return Float64.valueOf(length);

}

public class TravelingSalesman {

public static void main(String [] args) {
final int stops = 20;

Function<Genotype<EnumGene<Integer >>, Float64> ff =
new FF(adjacencyMatrix (stops));
Factory<Genotype<EnumGene<Integer >>> gt = Genotype.valueOf (
PermutationChromosome . ofInteger (stops)
)5

final GeneticAlgorithm <EnumGene<Integer >, Float64>

ga = new GeneticAlgorithm<>(gt, ff, Optimize .MINIMUM) ;
ga.setStatisticsCalculator (

new Calculator <EnumGene<Integer >, Float64 >()
)

ga.setPopulationSize (300);

ga.setAlterers (
new SwapMutator<EnumGene<Integer >>(0.2),
new PartiallyMatchedCrossover<Integer >(0.3)

)3

ga.setup () ;

ga.evolve (700) ;

System.out.println (ga.getBestStatistics ());
System.out.println (ga.getBestPhenotype());

}
private static double[][] adjacencyMatrix (int stops) {
double [|[] matrix = new double[stops]|[stops];
for (int i = 0; 1 < stops; ++i) {
for (int j = 0; j < stops; ++j) {
matrix[i][j] = chord(stops, abs(i — j), RADIUS);
}
}
return matrix;
}

private static double chord(int stops, int i, double r) {
return 2.0xrxabs(sin ((PIxi)/stops));
}

private static double RADIUS = 10.0;

The Traveling Salesman problem is a very good example which shows you
how to solve combinatorial problems with an GA. Jenetics contains several
classes which will work very well with this kind of problems. Wrapping the base
type into an EnumGene is the first thing to do. In our example, every city has
an unique number, that means we are wrapping an Integer into an EnumGene.
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Creating a genotype for integer values is very easy with the factory method
of the PermutationChromosome. For other data types you have to use one of
the constructors of the permutation chromosome. As alterers, we are using a
swap-mutator and a partially-matched crossover. These alterers guarantees that
no invalid solutions are created—every city exists exactly once in the altered
chromosomes.

| Age mean: 1.48333333333 |
| Age variance: 3.72212931996

| Samples: 300 |
| Best fitness: 62.573786016092335 |
| Worst fitness: 315.49784819824816 |

L et T +
N R +
| Fitness Statistics |
e T +

| Fitness mean: 118.87334461782 |
| Fitness variance: 6464.82405084876 |
| Fitness error of mean: 6.86315575146 |

[19118117116115]14113[12]11]1019187161514131211]10] --> 62.573786016092335

The listing above shows the output generated by our example. The last
line represents the phenotype of the best solution found by the GA, which
represents the traveling path. As you can see, the GA has found the shortest
path, in reverse order.

8 Build

For building the Jenetics library from source, download the most recent, stable
package version from https://sourceforge.net/projects/jenetics/files/
latest/download and extract it to some build directory.

$ unzip jenetics-<version>.zip -d <builddir>

<version> denotes the actual Jenetics version and <builddir> the actual build
directory. Alternatively you can check out the latest—unstable—version from the
Mercurial default branch.

$ hg clone https://fwilhelm@bitbucket.org/fwilhelm/jenetics \

<builddir>

# or

$ hg clone http://hg.code.sf.net/p/jenetics/main \
<builddir>

# or

$ git clone https://github.com/jenetics/jenetics.git \
<builddir>

Jenetics uses GradleF_g] as build system and organizes the source into sub-projects
(modules) %] Each sub-project is located in it’s own sub-directory:

Yhttp://gradle.org/downloads

20Tf you are calling the gradlew script (instead of gradle), which are part of the downloaded
package, the proper Gradle version is automatically downloaded and you don’t have to install
Gradle explicitly.
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8 BUILD

org.jenetics: This project contains the source code and tests for the
Jenetics core-module.

org.jenetics.example: This project contains example code for the core-
module.

org.jenetics.doc: Contains the code of the web-site and this manual.

For building the library change into the <builddir> directory (or one of the
module directory) and call one of the available tasks:

compileJava: Compiles the Jenetics sources and copies the class files to
the <builddir>/<module-dir>/build/classes/main directory.

test: Compiles and executes the unit tests. The test results are printed
onto the console and a test-report, created by TestNG, is written to
<builddir>/<module-dir> directory.

javadoc: Generates the API documentation. The Javadoc is stored in
the <builddir>/<module-dir>/build/docs directory

jar: Compiles the sources and creates the JAR files. The artifacts are
copied to the <builddir>/<module-dir>/build/libs directory.

packaging: Compiles the sources of all modules, creates the JAR files and
the Javadoc and creates a complete library package—the very same which
you can download from the home page. The build artifacts are copied into
the <builddir>/build/package/jenetics-<version> directory.

clean: Deletes the <builddir>/build/* directories and removes all gen-
erated artifacts.

For packaging (building) the source, call

or

$ cd <build-dir>
$ gradle packaging

$ ./gradlew packaging

if you don’t have the the Gradle build system installed—calling the the Gradle
wrapper script will download all needed files and trigger the build task after-
wards.

IDE integration Gradle has tasks which creates the project file for Eclipsd”]]
and IntelliJ IDEAPZ Call

$ ./gradlew <eclipse|idea>

for creating the project files for Eclipse or IntelliJ, respectively.

2Uhttp: //www.eclipse.org/
2Zhttp://www.jetbrains.com /idea/
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External library dependencies The following external projects are used
for running and/or building the Jenetics library.

e JScience

— Version: 4.5.1

Homepage: http: // jscience. org

Download: http: // java. net/projects/ jscience/ downloads

License: \JScience BSD License

Scope: compile, runtime

o TestNG

Version: 6.8.1

Homepage: http: //testng. org/doc/ index. html
— Download: http: //testng. org/testng-6. 8. 1. zip
— License: Apache License, Version 2.0

— Scope: test
e Apache Commons Math

— Version: 3.2
— Homepage: http: //commons. apache. org/proper/ commons-math/

— Download: |http: // tweedo. com/mirror/ apache/ commons/ math/
binaries/ commons—-math3-3. 2-bin. zip

— License: Apache License, Version 2.0

— Scope: test
e Java2Html

— Version: 5.0

— Homepage: http: //www. java2html. de/

Download: http: //www. java2html. de/ javalhtml_50. zip
License: |GPL or CPL1.0

Scope: javadoc

e Gradle

Version: 1.10 (or later)

Homepage: http: //gradle. org/

— Download: http: //services. gradle. org/distributions/gradle-1.
10-bin. zip

License: [Apache License, Version 2.0

Scope: build
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9 LICENSE

9 License

The library itself is licensed under the |Apache License, Version 2.0.
Copyright 2007-2013 Franz Wilhelmstotter

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
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