Terasuce.

PROVEN SOFTWARE SOLUTIONS.

TeraByte Scripting Language

Reference

TeraByte Unlimited
Las Vegas, Nevada, USA
http://www.terabyteunlimited.com

Copyright © 2007-2013 TeraByte, Inc. All Rights Reserved

http://www.terabyteunlimited.com/

TeraByte Scripting Language (TBScript) Language Reference

Overview

TBScript is a simple yet flexible scripting language, which allows you to automate many different types of tasks.
TBScript is similar to the BASIC language and users familiar with BASIC should quickly become productive using
TBScript.

TBScript is loosely typed in that variables do not need to be declared and the same variable can store data of any
of the supported types. In addition, it is not case sensitive. Variables and symbols can use any combination of
upper and lower case characters.

Structure

A TBScript file consists of one or more subroutines. All scripts must define one subroutine called MAIN. Execution
starts at this subroutine. Any subroutine can return a value using the RETURN keyword.

// Here i1s a sample script.
// Text that follows // or ; are comments and
// are ignored by the interpreter.
// Execution begins at the following subroutine
sub main()

printl (double(5))
end sub

// Here"s another subroutine. 1t returns the
// argument value times two
sub double(val)
return val * 2;
end sub

This example defines two subroutines, main and double. Double accepts an argument and returns that value times
two. Main passes 5 to double and prints the result.

Subroutines are called by specifying the name of the subroutine followed by parentheses. If the subroutine takes
arguments, they can be specified between the parentheses separated by commas. Subroutine calls may be
included in expressions or assigned to a variable, or even used as arguments to other subroutines.

Variables

As stated earlier, variables in TBScript are loosely typed. Any variable can contain a 64-bit integer (32 bit for DOS
real mode), floating point, or a string value. In addition, a variable can also be contain sub variables using the “dot”
syntax or elements using the “bracket” syntax.

// The following line makes a an integer value

a = 452

// This makes it a floating point-value
a=5.2

// And this one makes it a string

a = "This is a test!"

// These lines creates sub variables of a
a.i = 452

a.f=5.2

a.s = "This iIs a test"

// This creates elements of the variable a
a[l1l] = 452

a[2] = 5.2

TBScript Reference Page 1 of 23

Note that any of the statements above will create the named variable if it has not already been created. This is also
true when a variable is read.

NOTE: Variables are unique to the current subroutine. Variables in different subroutines with the same name are
different variables.

Constants

Constants are fixed values. Here are a few examples of valid constants.

// This iIs an integer constant

55

// Here i1s a floating-point constant

75.2

// Here 1s a string constant

"This 1s a test"

// This 1s an integer constant in hexadecimal (leading 0x)
Ox1F

// This 1s an integer constant in octal (leading 0)

010

String constants can contain special escape sequences to create unique characters. A caret (*) initiates an escape
sequence. Here is a list of the escape sequences that are supported.

Escape Character Meaning

“ra" Bell (alert)

“Np” Backspace

A Form feed

“n” New line

AT Carriage return

M Tab

A Single quote

o Double quote

AN A single caret character

You can also specify characters by specifying the ASCII value of the character using either of the following two
formats.

“"NN” Specifies an ASCII character where NN are two hexadecimal (base 16) digits.
“"NNN”" Specifies an ASCII character where NNN are three octal (base 8) digits.
Operators

Operators are used in expressions to modify or compare subexpressions. TBScript supports arbitrarily complex
expressions and all of the following operators.

Unary operators:

Assignment operator:
Concatenation operator:

Math operators:

Bitwise operators:

TBScript Reference

Positive (the default)
Negative

Assigns a value to a variable

Appends one string to another

Adds one value to another

Subtracts one value from another

Multiplies one value by another

Divides one value by another

Divides one value by another and returns the remainder

Bitwise AND
Bitwise OR

Page 2 of 23

N Bitwise XOR

Comparison operators: = Equal

<> Not equal

< Less than

> Greater then

<= Less than or equal

>= Greater than or equal
Logical operators: AND If both expressions are true

OR If either expression is true

Note: The concatenation, addition, subtraction, and bitwise operators all operate at the same precedence from left
to right. (e.g. "Answer is:" # 3 & 3 results in 0, "Answer is:" # (3 & 3) results in “Answer is:3")

Here are some examples:

A=5* (((2+3)-1)
A = (6+3) & (7-2)
A = "This is " # "a test."

IF A>0 AND B > 0 THEN
// Both tests are true
END IF

TBScript Reference Page 3 of 23

Reference
This section provides a complete reference for all TBScript keywords and built-in subroutines in alphabetical order.

NOTE: Terms in the Usage section of the reference enclosed in square brackets ([]) indicate that the term is
optional.

ARG, ARGC Subroutines

Usage:
a=ARG(n)
n = ARGC()

Description:

The ARG and ARGC subroutine are used to access any arguments that were passed on the command line (when
the script was started). ARGC returns the number of arguments. ARG() returns the argument indicated by n, which
can be in the range 1 through the value returned by ARGC.

In addition to the arguments described above, the ARG subroutine returns the fully qualified path of the script file
when n = 0.

Example:
sub main()
printl("Script name = ", arg(0))
for 1 = 1 to argc()
printl("Arg ", i, " =", arg(i))
next
end sub

ASC Subroutine

Usage:
n = ASC(s)

Description:
The ASC subroutine returns the ASCII value of the first character in the string s.

Example:

sub main()
// Print ASCII value of "A"
printl (ASC('A™))

end sub

BINARY Subroutine

Usage:
n = BINARY(n)

Description:
This subroutine returns a binary data type (used for binary file operations). This subroutine was added in TBSVER
3.

Example:
sub main()

bindata=BINARY(*'STRING™)

bindata=BINARY(0)

bindata=bindata # bindata // two zero bytes
end sub

TBScript Reference Page 4 of 23

BREAK Subroutine

Usage:
n = BREAK(n)

Description:
Enable (n=1) or disable (n=0) the ability to break out of the running of the script by use of the CTRL-C or CTRL-
BREAK key on the keyboard. The return value is the break value prior to setting the new value.

Example:

sub main()
// Disable CTRL-C and CTRL-Break
BREAK(0)

end sub

CHDIR Subroutine

Usage:
r=CHDIR(path)

Description:

Changes the current directory to the given path. This subroutine returns zero on success or a non-zero failure
code.

CHR Subroutine

Usage:
s = CHR(n)

Description:
The CHR subroutine returns a string with a single character, which has the ASCII value of the number n.

Example:
sub main()
// Print A"
printl (CHR(65))
end sub

CLS Subroutine

Usage:
CLS()

Description:
Clears the screen and positions the text cursor at the top, left corner of the screen

(The remainder of this page has been intentionally left blank)

TBScript Reference Page 5 of 23

CONST Keyword

Usage:
CONST name = value

Description:
Defines a constant symbol.

Constants are similar to variables except a) They are defined at the top of your script before any subroutines, and
b) Their value cannot be changed. Constants are useful, for example, when you write a script that uses a value in
several places, but you want to be able to easily change that value at one location.

There are also default constants: TBSVER contains the version string of the script engine; TBSENV contains
"DOS", "LINUX", or "WINDOWS" depending on which type of environment the script is running on; TBSAPPPATH
contains the path name to the folder containing the main application.

Example:
const A = 100

sub main()

printl(""The value of A is ', A)
end sub

DIRECTVIDEO Subroutine

Usage:
DIRECTVIDEO([n])

Description:

This subroutine is used to set the DOS environment to either write directly to video memory or to use the BIOS. By
default direct video mode is enabled as it's much faster. If you have a need to use BIOS video then use this
subroutine to turn off direct video mode. This subroutine was added in TBSVER 4.

Example:

sub main()
directvideo(0) // turn off
directvideo() // turn on
directvideo(l) // turn on

end sub

EXEC Subroutine

Usage:
EXEC(s[,f])

Description:

Executes a shell command. The string s can be any valid shell command. Returns the return code (errorlevel) of
the command. The optional f parameter determines the format used to pass the parameters to external programs.
It was added to maintain backwards compatibility. By default (or zero) the parameters are parsed by exec and then
passed to the program, otherwise if set to one (1) the raw non-parsed parameters are passed.

Example:

sub main()
exec("'program ~A"A"param one/N''N'"" —-—param2) // old format
exec("'program ~param one™' --param2™, 1) // new format iIs easier

exec(''script.tbs™)
exec("'shel lcommand™)
end sub

TBScript Reference Page 6 of 23

ExitLoop Keyword

Usage:
ExitLoop

Description:
Exits out of a While/Wend or For/Next loop.

Example:
sub main()
// similar to a repeat/until loop
while 1
keyval=GetKey()
printl(""You entered key code
it keyval=asc(''q"") then
exitloop
end 1f
wend
end sub

, keyval)

EXT Subroutine

Usage:
EXT(s)

Description:
Executes script extensions that may exist in a product.

Example:
sub main()

ext("'extcmd paraml param2'™)
end sub

(The remainder of this page has been intentionally left blank)

TBScript Reference Page 7 of 23

FINDFIRST, FINDNEXT Subroutines

Usage:
f = FINDFIRST([S])
f = FINDNEXT(f)

Description:

Use these subroutines to iterate through system files.

The optional argument to FINDFIRST indicates the filespec used to filter the files returned. If the argument is
omitted, “*.*” is used.

The value returned by FINDFIRST can then be passed to FINDNEXT repeatedly to iterate through all the files
matching the filespec.

The value returned is the name of the file. Both subroutines return an empty filename (“”) when there are no more
matching files. The returned value has several members that contain additional information about the current file.
These members are NAME, DATE, TIME, SIZE, ATTRIB, CDATE, CTIME, ADATE, ATIME, MODE and SFN (if

different than NAME). TBSVER 5 adds sortable date and time values of DATETIME, CDATETIME, ADATETIME.

In order to close the internal find handle you should empty the variable holding the returned value when you abort
the find operation before an empty filename(*") is obtained. (e.g. f="")

Example:
sub main()
f = Findfirst("*.*")
while len(f) > 0
c=c+1
print(’" ", f.date)
print(’* ", f.time)
print(’" ", f.size)
print("* ', f.attrib)
printl(f.name)
T = findnext(fF)
wend
printl(c, " Ffile(s)")
end sub

(The remainder of this page has been intentionally left blank)

TBScript Reference Page 8 of 23

FOR..TO..NEXT Keywords

Usage:

FOR var = start TO end
statements

NEXT

Description:
Use a FOR loop to execute a block of statements a specified number of times.

Initially, var is set to the value specified by start. Then, each time the block of statements are executed, var is
incremented. When var is greater than end, execution continues on the next statement after the NEXT keyword. If
end is less than start, the block of statements is never executed.

NOTE: The start and end values are evaluated only once and the resulting values are cached. So, for example, if
the loop modifies values used in the end expression, this will not alter the number of times the block of statements
is executed.

NOTE 2: Unlike the BASIC language, the name of the variable is not required nor allowed after the NEXT
statement.

Example:
sub main()
for i = 1 to 10
printl(""This is line ", 1)
next
end sub

GETCWD Subroutine

Usage:
d=GETCWND([d:path])

Description:

Gets the current working directory of the given drive in path or the current drive if no drive letter provided. This
function returns an empty string on error.

GETDATE Subroutine

Usage:
s = GETDATE()

Description:
The GETDATE subroutine returns the current date as a string.

Example:
sub main()
// Extract components of current date
date = getdate()
month = mid(date, 1, 2)
day = mid(date, 4, 2)
year = mid(date, 7, 4)
end sub

TBScript Reference Page 9 of 23

GETDATETIME Subroutine

Usage:
s = GETDATETIME([datetimevalue])

Description:

The GETDATETIME subroutine returns a date and time string value based on the current locale setting. If
datetimevalue is not provided then the current date and time are used. The datetimevalue parameter is a numeric
value based on either Unix time or Windows file time. Large values are assumed to be Windows file time, smaller
values Unix time. NOTE: The Right(TBSVER,3)="x16" version of TBScript does not support the datetimevalue
parameter and will return an empty string.

Example:
sub main()
// Extract components of current date/time
datetime = getdatetime()
month = mid(time, 1, 2)
day = mid(time, 4, 2)

year = mid(time, 7, 4)

hour = mid(time, 12, 2)

min = mid(time, 15, 2)

sec = mid(time, 18, 2)
end sub

GETDRIVE Subroutine

Usage:
d=GETDRIVE()

Description:
Returns the current drive letter followed by a colon (e.g. "A:") or empty string if no current drive.

GETENV Subroutine

Usage:
s = GETENV(s)

Description:
Returns the value of the specified environment variable.

GETKEY Subroutine

Usage:
n = GETKEY/([prompt[, timeout]])

Description:
The GETKEY subroutine returns the value of the next key pressed by the user. prompt is an optional prompt string
that is displayed before waiting for the key press.

timeout is an optional argument that specifies a timeout period, in seconds. If the user does not press any key
within the specified number of seconds, the GETKEY subroutine returns a value of 0 without waiting for a
keystroke. If the timeout argument is omitted or is 0, the GETKEY subroutine waits for the next keystroke
regardless of how long it takes. Note that the timeout argument can be specified only if the prompt argument is
specified; however, prompt may be an empty string ().

TBScript Reference Page 10 of 23

GETSTR Subroutine

Usage:

s = GETSTR([prompt [, maxchars]])

Description:

Returns a string entered by the user. prompt is an optional prompt that is displayed before waiting for the user to
enter a string. In addition, maxchars is an optional number that specifies the maximum length of the string that the

user can enter.

NOTE: If maxchars is specified, the prompt argument must be included. If TXINIT is active then a newline is not

automatically output after pressing enter (except under Windows which always outputs a newline).

GETTIME Subroutine

Usage:
s = GETTIME()

Description:

The GETTIME subroutine returns the current time as a string.

Example:
sub main()

// Extract components of current time
time = gettime()
hour = mid(time, 1, 2)

min = mid(time,
sec = mid(time,
end sub

4, 2)
7. 2)

GETSYSINFO Subroutine

Usage:
si = GETSYSINFO()

Description:

Returns information about the current system. The variable contains the following members: BIOSDate,
BlIOSVendor, BIOSVersion, SysFamily, SysManufacturer, SysProductName, SysSKU, SysVersion, SysUUID.

Example:
sub main()

si=getsysinfo()
it (si1) then

printl(""'BI0S Date: ', si.biosdate)
printl("'BIOS Vendor: ', si.biosvendor)
printl(""BI0S Version: ", si.biosversion)

printl(*'System
printl(*'System
printl ("'System
printl ("'System
printl ("'System
printl ("'System
else
printl(""Unable
end if

end sub

TBScript Reference

Family: ", si.sysfamily)
Manufacturer: ", si.sysmanufacturer)
Product Name: ", si.sysproductname)
SKU: ", si.syssku)

Version: ", si.sysversion)

UUID: ', si.sysuuid)

to obtain the system information')

Page 11 of 23

GLOBAL Keyword

Usage:
GLOBAL name = value

Description:
Defines a global variable.

Global variable are similar to regular variables except they are defined at the top of your script before any
subroutines.

Example:
global A = 100

sub main()
printl("The value of A is ', A)
ChangeA(Q)
printl("The value of A is ', A)
end sub

sub ChangeAQ)
A=200
End sub

GOTO Keyword

Usage:
GOTO label

Description:
Use the GOTO keyword to jump to another line in the current script. A GOTO line is identified by a symbol followed
by a colon (). The GOTO statement and the label being jumped to must be within the same subroutine.

NOTE: Caution must be taken when jumping into or out of a loop such as a FOR..NEXT or WHILE..WEND loop.
For example, if you jumped into a FOR..NEXT loop, execution would continue until the NEXT is encountered, which
would produce a “NEXT without FOR” error because the FOR keyword was skipped.

Example:
sub main()
printl(""This line gets executed™)

goto jump

printl("This line does not get executed')
Jump:

printl("This line also gets executed")
end sub

HEX Subroutine

Usage:
s = HEX(n)

Description:
The HEX subroutine returns a string hexadecimal representation of the number n.

Example:
sub main()
// Print F
printl (HEX(15))
end sub

TBScript Reference Page 12 of 23

IF..THEN..ELSEIF..ELSE..END IF Keywords

Usage:

IF expression THEN
statements

[ELSEIF expression2 THEN]
statements

[ELSE]
statements

END IF

Description:
Use the IF keyword to execute a block of statements only if a condition is true.

Optionally, you can also specify additional blocks that are executed only if the previous conditions are false and a
new condition is true (ELSEIF), or that are executed only if all other blocks are false (ELSE).

Example:

sub main()
a =10
b 0
c=20

if a > 5 then
printl(""fa > 5')
elseif b > 5 then
printl("b > 5")
elseif ¢ > 5 then
printl("'c > 5")
else
printl(""a, b, and c < 5™)
end if
// note the following difference due to b being numeric variable
it b="X" then
print('b = 0™)
end if

if "X"=b then
print(*’X = b"™)
end i1f
end sub

INSTR Subroutine

Usage:
n =INSTR(s1, s2)

Description:
Use INSTR to find a substring within a string.

INSTR returns the 1-based index of the start of s2 within s1. For example, INSTR(“find”, “in”) returns 2. INSTR
returns 0 if the substring was not found.

NOTE: The comparison is case sensitive, which means that INSTR(“find”, “IN”) returns O.

TBScript Reference Page 13 of 23

ISDRIVE Subroutine

Usage:
n = ISDRIVE(S)

Description:
ISDRIVE returns 1 if the drive indicated by s is a valid disk drive. Otherwise, 0 is returned. Only the first character in
s is examined so strings like “c”, “C:”, and “c:\temp” all produce the same result.

NOTE: If the specified drive is an existing drive but is not ready (for example, if a floppy drive has no disk in it),
ISDRIVE returns 0.

Example:
sub main()
for 1 =1 to 26
s = chr(asc('@™) + 1)
iT isdrive(s) then

printl("'Drive ", s, ":')
end 1f
next
end sub

ISSTRTYPE Subroutine

Usage:
n = ISSTRTYPE(s, t)

Description:
ISSTRTYPE returns 1 if the string type matches the type (t) requested. Use 0 for integer check, 1 for decimal, 2 for
alphabetic, 3 for alpha-numeric.

Example:

sub main()
s[1] = "1234"
s[2] = "23.4"
s[3] = "abc"
s[4] = "123abc"

for 1 =1 to 4
printl(""String ™', s[i],"™"")
printl("™ IsInt: ", IsStrType(s[i],0)
printl("" [IsDec: ", IsStrType(s[i].,1)
printl("" [IsAlpha: ", IsStrType(s[i].2)
printl(" [IsAlphaNum: ", IsStrType(s[i],3)
printl (")

next

end sub

LCASE Subroutine

Usage:
s = LCASE(s)

Description:
Returns a lower case version of a string.

TBScript Reference Page 14 of 23

LEFT Subroutine

Usage:
s = LEFT(s, n)

Description:

Returns a string with the left-most characters of s. The number of characters to return is indicated by n. If n is
greater than or equal to the length of the string, then the entire string is returned. For example, LEFT(“Test", 2)
returns “Te”.

LEN Subroutine

Usage:
n = LEN(S)

Description:
Returns the number of characters in a string.

LOF Subroutine

Usage:
n = LOF(n)

Description:
Returns the length of an open file. n is a number returned by OPEN.

MID Subroutine

Usage:
s = MID(s, pos [, len])

Description:
Returns a substring of a string. pos specifies the 1-based index of the start of the substring. len specifies the
number of characters to return. If len is omitted, the rest of the string is returned.

For example, MID(“Test string”, 6, 3) returns “str”, and MID(“Test string”, 6) returns “string”.

MKDIR Subroutine

Usage:
r=MKDIR(path)

Description:
Creates a new directory. This subroutine returns zero on success or a non-zero failure code.

OCT Subroutine

Usage:
s =0CT(n)

Description:
The OCT subroutine returns a string octal representation of the number n.

Example:
sub main()
// Print 17
printl (OCT(15))
end sub

TBScript Reference Page 15 of 23

OPEN, CLOSE Subroutines

Usage:
n = OPEN(name [,"in" | "in-out" | "in-out-trunc" | "uin" | "uin-out" | "uin-out-trunc" [, “binary”]])
CLOSE(n)

Description:

The OPEN and CLOSE subroutines are used to open a file for access and then close it. The optional open
methods specify how the file should be opened. The "in" option opens an existing file as read-only; "in-out"
(default) opens or creates a file that can be read or written; "in-out-trunc" will truncate an existing file to zero or
create a new file that can be read or written. The "uin" variety of open methods in non-binary mode will look for a
Unicode BOM at the beginning of the file and automatically translate the data as needed. The optional “binary”
parameter is available in TBSVER 2 or later and treats the data to read/write as binary data (not text strings).

Opened files that are not read-only can be written to using WRITEL, and all files can be read from using READL.
The current version only supports reading and writing lines of text.

This subroutine returns -1 if there was a problem opening the file and sets member .errno containing a failure code.

Note: Although the script interpreter will make sure that all opened files are closed eventually, you should explicitly
close any files you open. This will prevent you from running out of file handles if your script needs to open several
files.

Example:
sub main()
// Open a fTile
T = open("filel.txt", "uin-out™)

// Move to the end of any existing text
seek(f, lof(fF))

// Write 50 lines of text
for 1 = 1 to 50

s = "This i1s test line "™ # 1 # 111"
writel(Ff, s)
next

// Write one blank line
writel (F)

// Close fTile

close(?)
end sub

PAD Subroutine

Usage:
s = PAD(s, n[,0]1]2])

Description:

Returns a string that contains at least n characters. When the input string is less than n characters it can be justified
left (default) (0), middle (1), or right (2) by providing a third parameter. If the input string length is greater than or
equal to n then the input string is simply returned.

sub main()

// Print [test]

printl(""['", PAD(""test', 10, 1), "]')
end sub

TBScript Reference Page 16 of 23

PRINT, PRINTL Subroutines

Usage:
PRINT(s [, ...])
PRINTL(s [, ...])

Description:
Use these subroutines to print text to the screen. The difference between PRINT and PRINTL is that PRINTL prints
a new line after all text (it moves the text cursor to the start of the next line).

Both subroutines take any number and type of arguments.

Example:
sub main()
=5
= "Test"
= 52.9
printl(fa =", a, ", b=", b, ", c=", c)
end sub

OT o
|

RAND Subroutine

Usage:
r = RAND([seed])

Description:

Returns a pseudo-random number from 0 to 32767. You can optionally provide a seed to generate a new
sequence. The pseudo-random numbers generated are NOT cryptographically strong.

READL Subroutine

Usage:
s = READL(n [,siz€])

Description:

Reads a line of text (or data) from an open file. n must be a value returned by the OPEN subroutine. The optional
size value is available in TBSVER 2 or later and limits the amount of data read. On failure this subroutine returns
an empty string and sets member .errno containing the failure code to differentiate from a blank line being read.

RETURN Keyword

Usage:
RETURN [v]

Description:

Use the RETURN keyword to exit the current subroutine and return to the subroutine that called it. A RETURN
statement has the same effect as encountering an END SUB.

If an expression is included after the RETURN keyword, the value of that expression is returned to the calling
subroutine. If a value is returned from the MAIN subroutine, that value sets the script return code (errorlevel).

RIGHT Subroutine

Usage:
s = RIGHT(s, n)

Description:

Returns a string with the right-most characters of s. The number of characters to return is indicated by n. If n is
greater than or equal to the length of the string, then the entire string is returned. For example, RIGHT(“Test”, 2)
returns “st”.

TBScript Reference Page 17 of 23

RMDIR Subroutine

Usage:
r=RMDIR(path)

Description:
Removes an empty directory. This subroutine returns zero on success or a non-zero failure code.

RMFILE Subroutine

Usage:
r=RMFILE(filepath)

Description:
Deletes a file. This subroutine returns zero on success or a non-zero failure code.

SEEK Subroutine

Usage:
SEEK(n, offset)

Description:
Jumps to a position within an open file. So that the new position will be used for reading or writing. n is the value
returned by OPEN. offset is the location to jump to.

NOTE: Be aware that the file routines translate newline characters to carriage return, line feeds pairs. This means

that an offset may not work as expected under some circumstances. SEEK is mostly useful for doing things like
moving to the beginning or end of a file.

SETATTR Subroutine

Usage:
r=SETATTR(filepath, attribute)

Description:
Changes the attributes of a file to match attribute. This subroutine returns non-zero on success or zero on failure.

SETDRIVE Subroutine

Usage:
r=SETDRIVE(drvltr)

Description:

Changes the current drive to drvitr. Only the first character is used so "A:" is the same as "A" or "Apple". This
subroutine returns zero (FALSE) on error or non-zero (TRUE) on success.

SETENV Subroutine

Usage:
SETENV(env, val)

Description:
Use SETENYV to set an environment variable. If the environment variable already exists, the existing variable is
modified. Otherwise, it is created.

Example:

sub main()
setenv("'path', ""C:\")
printl (getenv(*'path™)

end sub

TBScript Reference Page 18 of 23

SETLOCALE Subroutine

Usage:
SETLOCALE(locale)

Description:

Use this subroutine to set the current locale. This setting affects the format of date and time strings created by other
subroutines.

The locale argument may be any of the following values:

0 Date and time strings will be created using the default format.

1

Date and time strings will be created using the 1ISO 8601 format.

SLEEP Subroutine

Usage:
SLEEP(seconds)

Description:

Use the SLEEP subroutine to pause for the specified number of seconds. SLEEP returns after the specified
number of seconds has passed.

SUB..END SUB Keywords

Usage:
SUB subname
END SUB

Description:
Defines a subroutine with the given name.

Example:
sub main()
printl(CC"In main()")
testl()
printl(""In main(Q)")
end sub

sub testl()
printl(""In testl()™)
test2()
printl("In testli()")
end sub

sub test2()

printl("In test2()”)
end sub

TXASCI| Subroutine

Usage:
TXASCII(0]1)

Description:
Enables output of ASCII characters under Windows.

TBScript Reference Page 19 of 23

TXCURSORTYPE Subroutine

Usage:
TXCURSORTYPE(0|1[2)

Description:
Sets the shape of the text cursor. 0=None, 1=Block, 2=Underline.

TXGETBLOCK Subroutine

Usage:
b = TXGETBLOCK(x1, y1, X2, y2)

Description:

Returns a reference to a saved area of the text console. The variable value returns 0 or 1 to indicate failure or
success.

TXGETINFO Subroutine

Usage:
ti = TXGETINFO()

Description:
Returns information about the current text console. The variable contains the following members:
ViewLeft — X location of the current screen view. 1 = left most position.
ViewTop — Y location of the current screen view. 1 = top most position.
ViewWidth — Width of the current screen view.
ViewHeight — Height of the current screen view.
Width — Width of the entire available text console.
Height — Height of the entire available text console.
Attr — Current text attribute.
CurMode — Current text mode.

TXGOTOXY Subroutine

Usage:
TXGOTOXY(X,y)

Description:
Moves the text cursor to the coordinates x and y. (1,1) is the upper-left most position.

TXINITSubroutine

Usage:
TXINIT()

Description:

Initialize TBScript to use the various text mode subroutines. This must be called at least once before calling any of
the other TX based subroutines.

Once this mode is enabled there are some differences that you should note:
1 — GetStr will not output a newline after input (expect under Windows). You must manually do it.
2 — Using a newline ("n) character for output will not include the carriage return under DOS.
3 — Outputting a newline under Linux will clear (using current color) text to the end of the current line.

If these differences are problematic then you'll need to design your own GetStr type subroutine using GetKey().
You can use the TBSENV variable to determine the environment the script is running in.

TBScript Reference Page 20 of 23

TXMODE Subroutine

Usage:
TXMODE (m)

Description:

Sets the video text mode. Setting the video mode is only relevant when used in the DOS environment. 0=Black
and White 40 columns, 1=Color 40 columns, 2=Black and White 80 columns, 3=Color 80 columns, 7=Monochrome
80 columns, 64=EGA/VGA 43/50 lines.

TXOUTCH Subroutine

Usage:
TXOUTCH(c [,repeat])

Description:
Outputs a character to the current cursor location and optionally repeats it.

TXPUTBLOCK Subroutine

Usage:
r = TXPUTBLOCK(b [,x [,yl])

Description:
Write a blocked of saved text back to the console. If x or y are provided the text is placed at those coordinates

otherwise the original location is used. The returned value indicates O or 1 to indicate failure or success. The block
(b) stays allocated until cleared by assigning another value to it (e.g. b="")

(The remainder of this page has been intentionally left blank)

TBScript Reference Page 21 of 23

TXSETATTR Subroutine

Usage:
TXSETATTR (attribute)

Description:

Sets the current text attribute to use on the next TX output subroutine. It's common to use a hexadecimal number
when specifying attributes due to the clarity it provides. For example, white text on a blue background would be
specified as 0x1F (1 being blue and F (15) being white).

Text Attribute 8-Bit Encoding
Bits Usage
0-3 foreground color (0 to 15)
4-6 background color (0 to 7)
7 blink-enable bit
Standard Colors
Value Description
0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light Gray
8 Dark Gray
9 Light Blue
10 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 Yellow
15 White
Example:
sub main()
tinitQ

txsetattr(Ox1F) // set white text on blue background
printl("This prints in color™)
txterm(Q)

end sub

TXTERM Subroutine

Usage:
TXTERM()

Description:

Terminates the use of the various text console subroutines. This should be called before ending the script if
TXINIT() was used.

TXWHEREX Subroutine

Usage:
X =TXWHEREX ()

Description:
Returns the X location of the text cursor. The left most position is 1.

TBScript Reference Page 22 of 23

TXWHEREY Subroutine

Usage:
y=TXWHEREY(s)

Description:
Returns the Y location of the text cursor. The top most position is 1.

UCASE Subroutine

Usage:
s = UCASE(s)

Description:
Returns an upper case version of a string.

WHILE..WEND Keywords

Usage:

WHILE expression
statements

WEND

Description:
Use a WHILE loop to execute a block of statements as long as an expression is true.

Example:
sub main()
a=1
while a <= 25
printl(""This i1s test line ", a)
a=-a+1
wend
end sub

WRITEL Subroutine

Usage:
WRITEL(n [, s])

Description:

Writes a line of text to an open file. n is the value returned by OPEN. s is the line of text to write to the file. If s is
omitted, a blank line is written to the file. This subroutine returns zero on success or a non-zero failure code.

TBScript Reference Page 23 of 23

